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Summary

The objective of the proposed research is to develop reliable algorithms !.hat can achieve
aggressive image data compression (with a compression ratio of 60 times or imore) for real-
time implementation. Typical applications of such algorithms include terrestrial HDTV
broadcasting, space communications, and handling and disposing of tcxic materials and
nuclear wastes with remotely controlled robots. The state-of-the-art techniques are ham-
pered by serious technical barriers of codebook design complexity.

The proposed approach is built on a vector quantization (VQ) algorithm recentdy le-
veloped by the Pl. The codebook design complexity of this VQ algorithin is only linrrly
proportional to the codebook size (significantly less than conventic..aial algForithrns) aiic the
encoding complexity is independent of codebook size. Highlightiaig the proposed app -oach
is a piecewise-linear transform preceding VQ based on the concept of entiopy p-trtitiol,;ng.

The novelty of the proposed algorithm is due to the following: (i) introiuction of a
piecewise-linear transform to VQ so as to retain more input informafion; (ii) exploiting
both inter-block and intra-block redundancy; (iii) use of parallel distributed ,ietw,).k for
real-time codebook design.

The proposed research is significant as (i) it addresses the inminent demands c- solving
the aforementioned real-world problems; (ii) its accomplishment will alle"iate ti, serious
complexity barrier of conventional VQ algorithms; (iii) it rashes forward the technical
frontiers of data compression.
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I. EXECUTIVE SUMMARY

This final report summarizes accomplishments and overall progress made during

the period of April 1, 1989 to March 31, 1990 for the research project sponsored by the

Office of Naval Research under Contract N00014-89-J-1788. It enlists publications and

Theses and Dissertations that have been sponsored, in part, by this research project.

A selected subset of th,- related publications is also included.

The objective of this research project is to perform fundamental studies on the

theory of selective update in signal and image processing. The approach is based on

selective use of input data in retrieving information of the underlying signals. The

selection will be based on the information content of the incoming data. Of particular

interests here are parameter estimation in adaptive systems. The significance of this

research project is that it is a timely response to the demand of higher level of machine

automation and man-machine interaction.

Over the last few decades, much endeavor has been made on improving the effec-

tiveness of data processing, particularly on integrated circuits technology. The advent

of very large scale integrated (VLSI) circuits technology has made available fast and

high density circuitry devices at lower costs. Processing of large volumes of data in

rea time has thus become more feasible and cost-effective in practice. As such, mod-

ern signal and image processing calls for algorithms that are compatible with such

technological advances. In particular, algorithms which can be implemented with

higher degrees of modularity, concurrency, and higher levels of machine intelligence,

thereby providing higher data-throughput rates, are more appealing in practice.

Most, if not all, of the efforts have been focused on the improvements of general

computational capabilities or the architectures of maneuvering arithmetic operations.

One critical issue which has often been overlooked is the extent of intelligence incor-

porated in the algorithms implemented. In particular, selective use of the input data

to improve the efficiency of information retrieval is as critical as improving the speed

of simple arithmetic operations. An essential reason for the selective use of input

data is that it eliminates redundant processing, thus could improve significantly the

potential of modular concurrent, processing. It also incorporates a decision-making
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procedure in the selection of data, thus enhances the level and capability of machine

automation.

This research project concentrates on the context of adaptive signal processing

in studying selective use of information. The ground work upon which this research

project rests is a set of recursive parameter estimation algorithms, i.e., the so-called

OBE algorithms, which feature a discerning update strategy. This discerning update

is in sharp contrast to the continual update used by most existing algorithms.

The OBE algorithms belong to a class of parameter estimation/identification al-

gorithms termed Set-Membership (SM) algorithms. The SM algorithms use certain

set-theoretic type of a priori knowledge about the underlying model to constrain

the solutions to a certain set. In particular, the disturbance and the input signals

are assumed to be bounded in some sense. The OBE algorithms are, perhaps, the

most viable SM estimation technique in terms of analytical tractability and practical

appealingness.

The emerging field of SM-based signal processing has received considerable at-
tention and is becoming increasingly popular in the research community around the

world. Many special sessions at professional conferences have been organized and

special issues in professional journals have been published. It is clear that researchers

around the world are excited about the tremendous potential of SM-based algorithms

for applications to problems of practical importance. To name a few applications,

time series analysis, spectrum estimation, speech and image enhancement/processing,

biology and chemistry, and pharmacokinetics are among the more notable ones.

One of the striking features of recursive SM-based algorithms, thus OBE algo-

rithms, is a discerning update strategy for the parameter estimates. An important

outcome of such discerning updates is that the resulting algorithm can be implemented

with two modules: an information processor followed by an updating processor. The

former decides whether an update is needed, and the decision is based on the evalua-

tion of the "information quality" of the input data, the predicion error, and the noise

bound. It is essential that the information evaluation involves very little computa-

tional effort, which is the case here. The latter then updates the parameter estimates

when the information processor decides that such is needed.
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Simulations on the OBE algorithms have shown, in general, that only less than

20% of the input data are used to update the parameter estimates. This is true

for most practical systems that can be modeled by autoregressive processes with

-xogeneous inputs (ARX) or autoregressive moving average (ARMA) processes whose

order is less than ten.

Conceptually, thanks to the modularity and to the fact that only less than 20%

of input data are used to update the parameter estimates, an adaptive signal pro-

c3ssing network may be constructed. The network will consist of a number of such

modular recursive estimators, each of which is comprised of two modules, namely,

the information evaluator and the updating processor. As such, idle time of both

the information evaluator and the updating processor can be reduced, thus the data

throughpot rate will be increased. In addition, the reliability of signal processing can

be improved greatly. In essence, this type of adaptive networks will be able to pro-

cess multi-channel adaptation and filtering, improving reliability and data throughput

rates. One of the important applications for this is adaptive array processing in sonar

systems.

In this project, several fundamental issues associated with this kind of estimation

algorithms are investigated. To begin with, investigations are conducted to extend

one of the OBE algorithms to the estimation of parameters of autoregressive-moving-

average (ARMA) processes. The resulting algorithm is referred to as the EOBE

algorithm. The ARMA process has been used to model signals encountered in un-

derwater array signal processing.

Among others, the issue of convergence for ARMA parameter estimation is of

critical importance to practical implementation. We showed that if the input noise

is bounded in magnitude and the moving average parameters satisfy a certain mpg-

nitude bound, then the a posteriori prediction errors are uniformly bounded. Wi' i

an additional persistence of excitation condition, the parameter estimates are shown

to converge to a neighborhood of the true parameters, and the a priori prediction er-

rors are asymptotically bounded. In contrast, the conventional algorithm of extended

least-squares requires the strictly positive real (SPR) condition to assure convergence.

It is worth mentioning that an important virtue of this EOBE algorithm is that,
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under rather mild conditions, the bounding ellipsoids always contain the true param-

eter, providing a 100% confidence region for the true parameter. This is a feature not

shared by other conventional algorithms which only guarantee that asymptotically.

Implementation on finite word-length processors is almost a mandate for all sig-

nal processing algorithms. We investigated the OBE algorithms' performance in finite

word-length environment via simulations. In particular, the effects of roundoff error

accumulation and numerical stability were studied with fixed point simulations. Anal-

ysis of error propagation in an OBE algorithm is also performed which shows that the

errors in the estimates due to an initial perturbation are bounded. Based on these

results, we showed that the OBE and the EOBE appear to be superior to the RLS

and the ELS, respectively.

One of the possible reasons for such encouraging results is the discerning update

strategy which updates parameter estimates less frequently, thereby accumulates less

roundoff errors. Another reason is imbedded in the update equations which may re-

quire more detailed analysis. Nevertheless, these results further verify our conjecture

that eliminating redundant use of information, contained in the received data, would

reduce the effects of roundoff errors.

We further investigated one of the OBE algorithms in terms of tracking properties.

Conditions which ensure the existence of these 100% confidence regions in the face of

small model parameter variations are derived. For larger parameter variations, it is

shown that the existence of the 100% confidence region can be guaranteed asymptot-

ically. A modification of the OBE algorithm was also proposed to enable tracking of

larger variations. Our simulation results have shown that the modified algorithm has

tracking performance comparable, and in some cases, superior, to the exponentially

weighted recursive least-squares algorithm.

In summary, our studies in this one-year project established the practical viability

of estimation algorithms that selectively use the input data.
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ARMAParmetr- -Estimation Usingr a- Novel
RKecursive, Estimation Algorithm -with

Selective updaing.
ASHOKK. RO. YI$ANGHUANG; ',iEMBER. IEEE. ;,%D SOURA DSUT

Abs~ract-This, piper in esigie an einsiou)f a recursive es'ti- tioial~equAtion methodj[1_'. the spectral matchinii tech,
niuo agoithmp (the sikcllid ODE aigonrthm) 1911111. %hich rea- nique of 'Friedlander and Potat 131]. and the extended

at iscenin upat straegy An patclr iiecesin h Yule-Walker method of Kaeh 14). A common feature of
algoith to RMAparameter estimaion is priesentedlhere along %ith

co nvergence analysis. hetnina iia oteetne es these mhethods is the- use of the-sample autocorrelation se-
isquae oithm coi~i~i. th~"einv'ergence ainalysis is', cumplicat -ed' Wiece the-output proces's y(t); In.-the context ofsys-

due, to, the discerning updaiie-strategy ishich inorporates an iliforma-. tem- identification. the extended -least-squares (ELS), the
tindpndent updating factor. The virtues of such an update strateg' rcusv maimlkehod(ML.nd utsae

are.~ ~~~~' I)mr ficettefhe~input data in terms (if in orntiation hv enue o ' s
;Pr( ie s sing. andi 2 anidialariaaptive filter struicture ib ich l%ould facil- le~si-squares algarithms hvbenudt recursively s

iaehedeveelopment, o 'f a, parillet-iipielined signal.processing airchi.; timateARMA paramleters 151. [61.,[121; The ELS atgo-,
tjecture I't Is shownitisaethtfth it noise is bounded andi rithm ,uses-the- a~po.grer4i prediction -error, E ( r). *as an

,the moving average para,-meters satiifv a certain magnitude bound. then estimate, of w ).The regressor~ vector is-foarmed- fromf
thapstnoapredictiot nerrorsrie uniformly bounded. With an ad~ Vr Q- 1) y (t -- n) and e(Q - I ) , ' r)

ditonl prsstnceofe.~itiln cndtio, heparmeer stmaes The -standard. r~cufsiv&d least-squafes (lRLS) ajgorithni is
areshvi to convergeto a nieighboirhood of the true parameters. and
the ,po peIctio eror -r hw ob smoial one. then emiployed to -update -the estimnates. The algorithm is

Simuionh: esuttstshtow tha theparametier estimation erro fth coceptual simple-but restnictive in 'the es htcn
EOBEaliigorltlim~iscon parableto that, for theELS algorithm. vergence of the algorithm can be' asstured~only if th~e un-

delyingtransfer funiction, H(q') 11iC(4j -1/2

I. ITR~UC~ON is-strictly positive rfeal (SPR),. With- q" being 'the, delay
IT-N manny i'"'i' inl~rcsiq applications, such oprao ad

las speeh. 6ci:i~, seismic data processing, and '+cq -c 2  +. +cq ( )
echannele4Wiaizatiph;,a signlal'vy(t) is often considered as, The RML Algorithm. whieft uses a filterdd yeisitin of
:the-outp'ut o a';HIR'filter driveni by unknown white noise, the regressor vector. usted-in-the ELS al orithnm. -does hot
wt(t)' Ill; The signal -yU) cani thefeforebe moddled as an rqq) to be ,SPR. Hwvr h siae-hv
4ut6rer&ssive movins! Average the reAuieHAq However, the esihee

to be morntored and projected into asaiiy-eint
ensure convergenfce 15].

y(r) - qty(v - IT)+ + anY(t - n) + wv(t) In addition to the 'aforementioned least-squares bas9ed
+ Cil t - ) + ' + -Crw(t - 1 1.).1 mnethods, there exists a different class of estimnatioh al-

Fittindi'this ARMA m~odel to the.,measured-data q(i) - orthms -that estimate mnembership sets, 'of' parameters
I ' 'rquies he ~tiatii~ f te pramter ~, which are consistent with the measurements and noise

a~. 1.....~ May mehod. fo th esIto constraints [71-f4111. 'these algorithms are particularly
ot ~RMAparmetrs avebeenproose inthelitra- useful, when the -noise distribution is, unknown but con-

ture. pariculaflV; ffomthe spectral' estihto' vepi straints in the form of boundson the instantaneous values
' an the more recenit are'Cadzow's overdcterminedra- of the noise areavailable. To-the best of our knowledge.,

none of the algorithms, has been applied'to theproblem of
5ianuwcript received \pril 30. 1988. re~ i'ed \ia, 4 100t~ *fl I virk ARMIA param~eter estimation. Ainong these algorithms

~asuptrnd n an ~ he atonl SieeeFoudaionunerGrat p. based' on membership sets. ai group of senminal recursive
87-I11%1 in pan byiie Oficeoi-Naval Research under Conira~j \0001I4- algorithms are the so-called optimial, bouniding ellipsoid
87-k-0284. and-in pan b% the National Scienme Foundation under Grant (OBE) algorithmrs 191-1ll1. The OBE algorithms have

A. K. Raois- %h COMSAT Laboratories. Ciark~bur _. %ID 20V I been developed asng I e-hoci formulation and are
Y.F.Hang is N~iiththe-Departnien'ot Electrical anti Compiuter Fn,-,- applicable to autoregressive with exogenous input (ARX)

neerine. bniversit% ol N\otre Damne. Notre Damec. IN 4h55h models with bounded noise. One of the main features of
S. bi~guptia is,%a the Department 4t Ele .tri.iI and Coniptier Fnti-

neerine.' Ciiiemtiv (it ioua. lo%%a City. IA i2242 these temporally recursive algorithms is a discerning up-
IEEE Loe'Numiber 50)33425, date strategyv. This feature. obtained by the introduction

0096-351819010300-0447S501.0O f 1990 IEEE
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of an- 'inrrmation ~iebendent vumuatin~y, ror~etut! :xwtor. ne- .:or 7-. 'ara - z.- ..nu
yieldsajfodular structure thereby increasing tn, xotemiai
1for concurrent, and, pipelined brocessing- of iigals. The 'I * *-I i

presence. of such a- forettinE !-ictor also Lives the ahio-. I.ui-i- i-

-rithris the, abilitvy to-track slowiv time xarving parameters. er
One-of the'ai:,_orithmffs, 111 has been-shown to-possess- the OiseL i~s oredi ' aLmi. A iesu t exists atfe
adVahtageous feature of- automatic as\'iiiprotic cessation niei one nm~iue ~. eeeit I

0. such that
of updates if the. model is'time invariant. If a loose upper
' bound.on the nioise magnfitud. is-known.,and if the input P~)for all-i. hience.
is- persisiently exciting and -sufficiently- uncon-elated with
-the~noise. then it'haszbeen shown in [Il I that the parfami- ( I ~IJ

~er esimates converge asymptotically to a neighborhood ~tS easbe fteeciensaeR "-.defihedipfatheeteu vector. by
In this ,paper. we extend one of the OBE algorithms (111

'to the.ARMA-case. For the ARMA pAr-ameter estimation ~ 0 ~~) G4(~ ~. 0eR''
probleni, the OBE algorithm cannot be appliedin it pe- Foage etcpinofiw.,isaonvexpoytope*

ntfopn. Hlowever,-by assuminatthat the -inbut %,,hite noise- inteprmtrsaeadcnan h vector of true pa-
is botunded in magnitude. the.OBE aloorithm -can be ex- rameters. The OBE algorithml starts off -with a large el-
tended4 'in'amanner similar to the -ELS algorithm. Con- 'tp-soid. go. in R" i4 'which contains allpsievlus
.vergdnceanalvsis~of the resulting'algorithm is performed of -ih6, modeled parameter P*.After the first observationE
'by i'mposirg a'b6did onl the. sum of- the-magnitudes of thl ' I- ) is acquired. an ellipsoid-is foun~d:which bounds the
MIA coefficients-. This eiisures that the true parameter % ec- intersection of -E0 and the convex polytope S1. This elU
tor is cohtained--in all the-optimal bounding el.lipsoids. A lipsoidImust be optimal inwsome sense. .saymnmmvlf
unifohIm bound on, the- a posreriori prediction error can time [9), [10] orby anyotheecrite-ion [91.-[-11; to hasten-

* thenbe deive.-contrast, even thuhteapseir ovrec.Denoting the optima[ ellipsoid -by E,, one-
7 prediction -errors are generated in a stable fashion- in- the can proceed ex~actly as before with the future observationj-

ELS algorithm -(51, it, is difficult.-to obtain -an expressioh- and obtain -a- sequence- of optimal bounding ellipsoids
,for even-the asymnptotic- bound. -if such a bound'exists. By {E,,). The center of-the ellipsoid-E, can be taken as-the-
imposin g a p ersi stence of excitation condition on the-,re- parameter -estimate at the thl instant and- is denotedb
gressor vector,,,the a priori prediction- error of the -ex-4 0(r). If -at a particular~ time instant-i. the-resuilting optimaU
tended- OBE algorithm is shown to be bounded and the bounding ellipsoid would be-of a -smaller size," thereby
,Parameter estim 'ates:are-sho'n to converge to a neighbor- imnplying'that the-data poitit% (N )-conveys-some fresh- "in..
hood of the- true paralmeter- vector, formation" regarding the parameter estinmates. -then thj

The paper is organized in the following mnanner. In-Sec- 'parameters are updated. Otheriwise. E, is set equalto10-
tion H; a'brief review of theOBE algorithm- and its prop-- and the para meters are not-updated; It can also be shown
er-ties is presented. In Section AI. -the algorithm is ex - 111 that all -the ellipsoids 1,E,. t= 1. 2. contai3
tended -to ARMA parameter estimation. Convergee the true parameter 0P. provided-that E. does.
analysis of th~e extended algorithm is performed in Section Let the ellipsoid E,. at -the I t - I)th instant be for-
IV. The performance of thealgorithm is conmpared to the mlulatedbv
E8LS algorithm through -simulation studies -in Section V. E_ 0: (- 00 - I1 r)P I--I
Section VI concludes th& paper. ~i~ ( 1

II. THE OBE ALGORITHM (0 - 0(t - I))< C1 (o2 .21
-Consider the ARX mnodel described-by for some positive definite mnatrix P(t - I) and a nne

- - - ~~ative scaa a2 r-I) hn ie ). an ellipsoid
y(t) -=aly(t i v - n) - bou(tz) which bounds E, - lS, "tightl'' IS

- I + - i,1 (r - In) +;. vI-) {0 ( -0 -I)P'i-I

where yvU-)- is the output. im() is the measurable input. (0 - 0(1 M I Xj yi 1) --rl)

and NO z represents the uncertainty or noise. The above
equation can be recast as X,) I- )(t - I) -ji .

- 0TF~) ()) where the forgetting factor X 1) satisfies 0 :5 M\nz < If
Thle size of the bounding ellipsoid is related to the scalaE

where 02t- I ) and the cigyenvalues o If PUt - I ). The update
r equations for 0 t, Pi(t-), and ai i) are derived in I I

0* =f~i. h . u,~. b~) b.. . b,,JThe optimal ellipsoid %%hich bounds the intersection



?A0) .:%'IA M~RANMETER FSTIMiATION"

S E, id,,S is defined. in terms o-f anAoptimai vajue o .c. - =OcEC=K: 3=CA7=_ =CC=SSC=

Fo rAhe OBE algoithmnof-JfIl 1. the optimumn value A.isComt
determined bymrinimizing or-r r.).with- respect to-, at eveny vaec aer zvauae>_c5 -sme

uime instant- The minimization procedftifre results in X.'
being, set equal to zero (io-update) if- %

q~f - 1 ~k ~ ~.(2.4) mgu. i. modo jar recursive etiniator,

S If,(2.4) is not satisfied. then the optimal value of X, i
fl computed. The paranmeter estimation procedure is de-

Oicied-in Fig. L. An outgrowth of-this modular recursive Now just as in the ARX case. define for some suitable
estim~tion p -eueis a parallel-pipelined networking the convex polytope
structureif 131. The alg-orithm is such that the computa- n. =1 r:(~)-&(t~~y
tional complexity of the information evaluation (IE) pro-
cedure is -much -less than that of the updating procedure adtebudn lisi
(UPD). Since, in general. a good number of data samplesT
would be rejected by the LE. both the IE and the UPD {, o 1 e R"l r: (0 _ 0(r))TP_'(t)(0 -0(t))

would involve significant amounts of idle time. A viable 0(scheme thc::-; -t6 cronakure a parallel-pipelined network ()}
comprising of such modular estimators to process signals
from- multiple channels. Apart from reducing hardware The '. date equations for 0(t), P(t), and a2(t), which
costs. such a scheme would offer increased reliability then follow directly from [IlI], are as in the ARX case.
since the failure of one UPD processor would not cause with the only difference being that the regressor vector is
any of the channels to fail, in ontrast to a system with a now given by (3.5):
dedicated UPD processor for each channel. P()=( ,P( )+\() 4 () (.a

111. EXTENSION To ARMA MODELS 0 (t) = 0 t- I ) + X, P(t) 4(t) 6 (t) (3.6b)
aThe ARMA model described by (1. 1) can be rewritten

as6(t) = v,(t) _ OT(t _ 1) 4)(1) (3.6c)

wV(t) =y(t) _ O*T4,, (t) (3.1) U2 (t) = (1_ X')U 2(t _ 1) + ,2

where 0*. the vector of true parameters. and 4'(t) are I,( - XI) 62(t)(.d
defined by I- X, + X,G(t)

0* = [a,, a,, a,, C1, c'), .Cri T where

V (t) = ty(r - I) .,Y(t - 11). G(i') = 4)T(t) p0' _ I) (r). (3.6e)

ivt- I). - r) T,- The matrix inversion lemma can be used in (3.6a) to ob-
T tain the following recursion for PUt):

Here again. wv(t) is assumed to be bounded in magnitude.
i.e.. there exists positive Y2 such that P' P'-I

2(t : Y 0. (3.2)1-

Since the values of the noise sequence I w(t) ) are not -,~ .)4()-)~)Pt-1 (3.6f)
available, the regressor vector V ( t) is not known ex- I-X, + X,G(t)J
actly. If. however, at time t. an estimate of 0*. As in the OBE algorithm, the bounding ellipsoids are op-

0(r)= la~r) . a,(r c1(). rt)T timized bycosig, to minimize a ! t). In order to
facilitate the subsequent analysis. the initial conditions are

(3.3) modified to
is available. wUt) could be estimated by the a posteriori P()=M,.- JO . ad&0
prediction error P((3().7) n (0

6(1) v~r) 0 r(,)~F~(3(3.4
where( ) rt ( ) 34 where Ml . E « < I. and In r is the identity matrix

where of dimension n + r. This choice of initial conditions en-
(r) [= W - I) . .'. - 11). sures that the initial ellipsoid F0 will contain the true pa-

r rameter vector 0* and. more importantly. as shown in Ap-
E(r - I. . ~t - rd - (3.5) pendix A. simplifies the optimum' forgetting factor

9



4eterm ihjio I rua-'1 aI -,r .ii ~tune instants k < t.

f G-([ --- 6 1( ;5 - 1in 1." ( ~tti ne inswrit at which the next udatel

then-Xs) - Ccurs. then-

otherwise iii) ik) :s 4. oal ~j 13

__________Proof:

Ni It has been shown in Appendix A that if a2 I - I
- 01! > y.then the optimum forgetting factor XN sat-

it~z I, i 3,9a) isies

_ _ _ _ L I _ _ _ _ _ _ _ _d~ WX=, (4.4)

if'G('G (t I -b

ifh I(3-eb Taking the ddivative in (3,6d) and using (4.4) yields
w h re -~2 (~ -) (I - ' , 6 2( )

I- X,+ X,G(t)
62(t)(39)X6()G)

-Reniarks.' -: t - - (4,5a)
-I) AWis shown- in Appnd ixMhat if a (t - 1) 6 61-) (1- . ,-NGt))

> 'yl thenN,' given b (3.9) satisfies which can be rewritten in the formn

do() Y Z - oz(t 62It)=((rI) 2-X ~).(4.5b)
d X, 1XI -; =(I XN, +X, G(t)y I

and-furthermore, 0 < X* < 1. Thus. unlike III no up- In (4.5) and in the remainder of the paper. when there is
per bound need be imposed on the forgetting-factor. no risk of confusion. the optimum forgetting factor X,"

2) Since ul(t) = u0 - I) if X* = 0; any nonzero wvill be denoted by X, It is also easily shown from (3.6b).
value of X* which minimizes 02(t) will cause u (M < (3.6c). and (3.6f) that the a posteriori and a priori pre-
02(1 - I ), Thus. choosing X7* to- minimize o:(t) causes diction errors are related by

u2(t) ) to be a nonincreasing sequence,. - X)
The recursive relations (3.6). the in itial conditions 60,) X, ,GUTt) 6). (4,6)

(3.7), the selective update strategy (3.8). atnd the forget-
ting factor determnination formula 0.9) form the Extended Note that the nonnegativeness of Gi t implies that e - r
Optimal Bounding Ellipsoid kEOBE) estimation algo- < 6'wt. Substitutingy t4,6) in (4 5b) and rearran~ine~
rithm 1141. The choice of the threshold -2 will become terms yields
clear from the analysis below. The algorithm retains the .ui-I
discerning update strategy and the mod ular aidaptive filter X.) - Nt- - I
structure of the OBE algorithm 1111. 1131. =.(1 - x\?G(z) 2ft) 47

I .A A Y I or Ti O E A G RT MNow using (4.6) in 3.6d) givesI
The main diliculty in the analysis of the EOBE alg-o-

rithm arises from the' presence of the a posteriori predc M(1 = i X.or ) -r

tion errors in the regressor vector. Unlike the OBE algo- X-Gut)
rithm. in this case, boundedness of wUt) does not X. E~ii - 1 tE). (4.8)
Lluarantee that all the convex polytopes S,. t I. 2.

.... Will contain 0*. The first step in the Analxsis is to Fial.ubrtng4S fom4.hivs(,1
lind conditions under %\hich this happens. The . nimmi- Fii ally . ttn 1. 8) fro updat i insnr then 1 41
zation of (71tfl. at every time instant, and the choice of .iv es 1 tk i nudtn ntn.te 41
initial conditions (3.7). facilitate the characterization of
the behavior of the ai posteriori prediction errors. (.rk) M ~k 9 4.9)I

Lemmua 1. For the FOBE algorithmn of Section 111. if
(l~~ ~~ -) r i. ifnudt ccrttm But since I a-(t) is a nonincreahin2 sequence. (4.9) and

instan -. then-)> ie. ta pdt cur ttm (4. 1) together would imply thatj

i)7 M- -01 =1 4.1 _(k) :s o
10
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cse 2: if k < is a nonuDdatin _ instant. men -enc..
1 irk , and so by 3.8). oT k- i - i - _-." , IA l t) -- El I -

*, since o r) isnonincreasing. 6'( k : ( t e .
iii), Since Xk = + 1.t- 2. .. - - . are - c. t- 2. . c2. t-- i)"

Z*i all zero. a. Nk; = a(t). for all t < k < t . And be-
-cause-kis-a n6ihupdatifig, instant., u:ik - I) - lk) .
. (t) "(k) < 7. and s9.4.3) follows. But by Lemma I. it' - 1 the updating instant imme-I We can now d-cive sufficient conditions under %hich diatelv preceding time instant r. then
iho-cofivex-polytopges S, and E, will contain 0*.

77teorem k. The convex polytopes S, and consequently 6(t - ): e( - ) for I .i -< r.
the ellipsdids E, t = 1. 2.. . will contain the true Thus

1 paraneter. if
) °E0 contains 0*, (4.10a) (y(t) -

-ii) the true moving average coefficients satisfy / ,)
2 7 -' 2(t -j)

C < 0. 5. (4.l10b)\I

* iii) the threshold y" satisfies 7 + 2 ( -1 2(7" - C2(t - 1)).

Since e (, -1) - 0( 0t ) " - C"(t - I).
INow by the induction hypothesis. oa U - 1 ) 0. Hence.

4 " (y(t) - o*T (t)) < + 1 C)2. (4.16)

So the convex polytope S, will contain 0* ifI . Proof: Let the induction hypothesis be 0* e E, .
Then defining ( )(" 12.+ " 2 le 1 :S -- Y (4.17)

iV(r) = (o(t) - 0)P1t(t -0*) (4,11)
The inequality (4.17) will hold iff (4.1Ob) and (J. 1Oc) arerecalling the definition of E yields true. Assuming (4, 10b) and (4. 10c) thus guarantees that

SV(t- 1) 5 U2(t - 1) (4.12) for all time instants t

and since P-(t) is positive definite for all t. a2(1 - I - O-(t)) - " (4.18)

Now using (. 1) and (3.5) Using (3.6) and (4.11). it can be shown that

i1 1 10t) - 2(t) - (1 - X,)( V1t - I1 - o2t - I)

= (C(q')[w(t)] - (C(q-') - )e)(4.19)
* and so from (4.18) it follows that

where the operator C(q-') has been defined in (1.2). De-

lining n(t) = C(q-)[w(t)]. and recalling an elemen- V(t) U2(t) :_ (1 - X,)( V(1 - I - o([t -
tary algebraic inequality (4.20)

(a - b)2 <_ 2a2 + 2b2  Finally. by (4.12). it follows that

yields VMt - 02lt) _ 0. (4.21)

[y(t) - ort <V i2'(t) + 2(elU (I i.e.. E, contains 0". and alt) is nonnegative for all t.

- - c.,It- 2) C.... c,-,',f. ,4.13) Remarks:C 6 ) The assumption 4. 10b) says that the noise sequence
But Or() = C(q-' i[wtIl should not be "too colored.' This

acondition is analogous to the Strictly Positive Real (SPR)
•n't) _. tor tcondition which appears in the ELS algorithm (cf. Section

where I). It is not very difficult to show that for the SPR condi-weetion to hold. it is necessary that

14.14)17-" c < !. 14.22

1



It can also-be seen that conlition 14. lUb) 1 i :tricwer ir. ,imit,,. 1iounue e :,idmeter etimlaion C'-
of the Strictly Dominant Passive (SDP) condition 151 rors
which appe. ,b in the analysis of some signed LNMS aigo- . I I
ithms. and from f15]. it follows that (4. 1Ob) is sufficient o t1 - ," " - !,). 2-.-1 - '2. , I ,_ .] 14.26,

for the SPR condition to hold and hence is more restrictive
than the SPR condition. where 5,;and c. tre as in 6.2i and (4.24b). respectively

2) Selection of the right "noise bound"' -- is made c) If. in addition. the process ( 1. 1 ) is stable. then tie
possible by (4. 10c). The user would. however, need to algorithm yields as mptotically bounded a priori predic-
have some knowledge of the magnitude of the true mo% - tion errors
ing average coefficients. Simulation results show that - [0. "], I4,27

overestimation of - 2 has very little effect on the parameter
estimates (centers of the bounding ellipsoids). although it Proof'.I
may have an adverse effect on the size of the bounding a) From (3.6b) and I3.6f)
ellipsoids. 0 O(t) - O(t I ) 1

3) The conditions (4. 10b) and (4.10c) are not neces-
sary conditions, and the algorithm has been observed to _ XFr(t)P"(t - I 4(t).2(t) 14.28)I1
perform well in several examples where these conditions (I - , 28)G)

were violated.
The following result follows straightforwardly from _ eP(tt- ) G() 8'-t (4.29) I

Lemma I and Theorem 1. ' ( X + X,G(t)):
Corollarv I: If the conditions of Theorem I hold then

a.23 where e,,P\ I( - I(t is the maximum eigenvalue ot
a) lim E"(t)exists 14.2.3al P(t - I). and . denotes the Euclidean norm. Usingu

(3.6d) in (4.5a) yields
where I tj} is the subsequence of updating instants of the
EOBE algorithm, and Ct) - I) - - G Ij .(4,30)

b) uniformly bounded a posteriori prediction errors (I - X, + XG( t)f )

' -Y2. for all time instants t. (4.23b) The nonnegativity of "(t) therefore implies

Boundedness of 62(t), the apriori prediction error, and X2 xa2(i) G(i)
convergence of the parameter estimates to a neighborhood .. • = U20) - 2(t) < 0.
of the true parameter can be assured by requiring the re- ' (1 - Xj + XiG(i))"
gressor vector to be persistently exciting. The next lemma (4.31)
relates the positive definiteness of P - r( 0 to the richness H
of the regressor vector ,D ( rt.

Lemma 2: If there exist positive a, and N such that. for ,':"I GO Iaillt lml 0. 14 4 2
I .- X.-G(t

i F~i) (i) > a 1 > 0, (4.24a1 If (4.24a) holds. then by Lemma 2. e,,,P(t - Il. the

maximum eigenvalue of P(t - I ). is bounded for all t,
then there exists a positive a, such that and hence (4.29) and (4.32) yield

P-t) a .> 0. (4.24b) O(W - - I)11 - 0. (4.33 1
Proof of the lemma is the same as that of Theorem 4 1 of Apply Mng the NImkosk.i inequality to , ! ft -

I1 1. it is thus omitted here. I.) il and using (4.33) completes the proof of (4.25)
RemarkL The positixe definiteness of P - t implies b bing 3.0. 14.11 ). and (4.6j. an expression similar

that the eigenvalues of PMt) are upper bounded. to (4.19) can be derved as
Theorem 2: If the assumptions of Theorem I are sat- -

isfied and (4.24a) holds. then the EOBE algorithm en-
sures the following. q( - X.l'(i - 11 -, CUq IIwt) I

a) Parameter difference convergence -IC(,I -l1)16t1)1 Y
lim O() - 0(t - k) = 0 (tI 1

for any finite k. (4.25) 1 X, t).(4.34)tI
- ~149



It can also be seen that conaiton t4. I0b) is a stricter iorni C ~xatt~. nneixrmt~etmtol~-
of the, Strictly Dominant Passive (SDPI :Ondition 1!51 rors
which appe. b in the analysis of some siqned LNIS aiuo-
fithms, an d from [15]. it follows that (4. i0b) is sufficient - -~2 (I ' .
for theSPR condition to hold and hence is more restrictive
than ihe SPR condition. where -,,;and cx, ire as in (3.2 and 14.24b). respecti~el\

2) Selection of the ri2ht "'noise bound" - is mace c) If. in addition. the process (I.- I ) is stable. then the
possible by (4. 10c). The user would. however. need to algorithm ieids as> miptotical ly hounded a priori predic-
have some knowledge of the magnitude of the true ioN - tion errors
ing averag-e coefficients. Simulation results show that ~ 0 ~:.(4.27
overestimation of-12 has very little effect on the parameter
estimates (centers of the bounding ellipsoids), although it Proof'
may have an adverse effect on the size of the bouning a) From (3.6b) and (3,6f)
ellipsoids. 1 () -O t - I

3) The conditions (4.l10b) and W4.100 are not neces- x0(r) - 0( - I ) Dt)0
sary conditions, and the algorithm has been observed to T~~ri P2 r-I I 1t ~ (4.28)
perform well in several examples where these conditions , - + Go
were violated.

The following result follows straightforwardly from X, IG(t) 62(t)
Lemma I and Theorem 1, I-I) ,+X.) (4.29)

Corollary 1, If the conditions of Theorem I hold then her el-l N. P+ I s hemai u i)ev eo
a) lim E201,) exists I 4.23a1 whri, (i-I i h aiu ievleoP(t - I ), and d denotes the Euclidean norm, Uin-

CO (3.6d) in (4.5a) yields
where { r1 } is the subsequence of updating instants of the X 6W G(t)
EOBE algorithm, and a) at-I)-(4,30)

b) uniformly bounded a posteriori prediction errors (I X , + X, G(i))

0 s -Y2. for all time instants r. (4.23b) The nonneg'aativity of a2() therefore implies

Boundedness of 62(t), the a priori prediction error, and 'X22( i) G( i)
convergence of the parameter estimates to a neighborhood Z~ -F(0 U'(t) < 00,
of the true parameter can be assured by requiring the re- X I , + X, G(i )
gressor vector to be persistently exciting. The next lemma (4.31
relates the positive definiteness of P 1(t tlo the richness
of the regressor vector DF ( r), Hence.

Lemma 2: If there exist positive ce, and N such that. for X-()GMi

Ill -t -N X.G(i)
7 4 ~() i i) 2: Cy" > 0. (4.24a) if (4.24a) holds. then by Lemma 2. e,,,,, tPOi - I. the

maximum eigenvalue 01' P(t - I ). is bounded for all t.
then there exists a positive cy, such that and hence (4.29) and (4.32) yield

P-(t -: (4> 0. (4.24b) '0(i) - Olt - I) -~ 0. (4.33 )

Proof of the lemma is the same as that of Theorem 4 1 o pl n h lik\4i nqai' o"0( O
1111. it is thus omitted here. anuin 4.3 omltshepoff(42)

Remark., The positixe definiteness of P -i r implies b0 1ausini! (3b)4.3 clete tnd ~46 nprf o .25).

that the eigenvalues of PM) are upper bounded. to (419icne derived.11) ad06.a xrsin5nfa

Theorem 2: If the assumptions of Theorem I are sat- to4.9cabedrvds

isfied and (4.24a) holds. theni the EOBE algorithmn en-
sures the following.* VWi =I - X.) V(t - I -X I C(F )i)I

a) Parameter difference convergence -Cq I-I)EiJ

lim 0(i) - 0(i - k) =0 I-N .

for anyv finite k. 14-25) X, Ei] (4.34)
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Just as inthe proot of Theorem i. i1.34j _an oe c.\prec itir- iiiite.a..un gm.datn me notion or lounding

'ii.as sOlU anu cauimw ne ,eor-fhm to fail. In this situa-
I'(t ) < (I - X.)}V(t - I I - u,~on. the ELS algorithm wmil i'ui, too.

) Theorems I an _ "o not impose any statistical
properties on the input noise sequence I w( t) }. However.

+, . t- our simulation experience has been that the parameter es-
timates are usually not close to the true parameters if the

ZX.G(t) noise is not white. Of course. such is also the case for the

1 - ELS algorithm.1 X:.. ( 4.35 )

where 7y' is as in (4.14). and t - j is the updating instant V. SIMULATioN RESULTS
C meiSimulaons have been pertormed to investigate the per-

immediately preceding time instant t. Assume t is an up- formance of the EOBE algorithm vis a vis the ELS algo-
dating instant. Then (4. 10b), (4.2), and the nonnegativity rthm. In this paper. we present simulation results for two
of G(t) would imply that the term in square brackets on examples--a broad-band ARMA 3, 3) process and a nar-

the right-hand side of (4.35) is not positive, and so row -band ARMA ( 3) process and s nr n

row-band ARMA ( 2. 2) process where the indexes n. r in
V(t) <_ (1 - X,)V(t - I) + X '2. (4.36) an ARMA(n. r) process referto the ordersoftheA(q - )

andC( - I )polynomials. respectively.
It is obvious that if t is not an updating instant, then (4 36) and C(q ponom als. r t .
would still follow from (4.35). A nonrecursive form for Example I-Broad-band ARMA 3, 3) Process: The

(4.36) can be obtained as output data { yt y } are generated by the following differ-
I aence equation:
I t

V() _ r (I - X)V(O) +-y' 2  q, 14,37) v() = -0,40t: - IH -r 0. 2 y(t - 2) + 0.6y(t - 3)

where 
+ w(t) - 0.22w(t - I) + 0.17w(t - 2)

qjj h~)'"( X,), (4.38).1~t- )

,= = (4.38) The noise sequence { w(t) } is generated by a pseudo-

random number generator with a uniform probability dis-

For large t, the first term on the right-hand side of 14.37) tribution in [ -1.0, 1.01. The upper bound 'Y2 was set
can be neglected. In Appendix B. it is shown that equal to 25. The parameter estimates were obtained by

applying the EOBE algorithm to 1000 point data se-

q, < 1. (4,39) quences. Twenty-five runs of the algorithm were per-l I~ formed on the same model but with different input noise

Hence, for large enough t sequences, The average squared parameter error LI(t) is
computed for the AR coefficients according to the formula

V(t) = (0(t) - o*)rP-I(t)(O(t) - 01);<- l:5

14.40) Li) = 25 ,- (

And so (4.26) follows from Lemma 2 and (4.14).
c) Stability of the process (1. 1) and the boundedness of where l (t). the squared AR parameter error at time t for

w(t) implies that the outputs v(t) are bounded. Hence. the jth run. is defined by

from (3.6e). (4.23b), and Lemma 2. it follows that IP) = Z' WaM) - aj~

G(t) __eO4P(:I - l)}[ry 2 + i max " -])

< ( with a, and a,() being delined by (I.1) and (3.3). re-
spectively. The average squared parameter error L( for

where n is the order of the AR proess and i is the order ihe MA .oelficients is defined analogouslN Figs 2 and 3

ot the MA process. It can now be shom n. just as in Theu- displa. the at erage nquared etmation errors for \R and

rem 3.2 ot 1111. that the a pruri prediction errors zatiblf MA parameters abrng both the EOBE and the ELS aigo-

(4.27). rithms. The curves show that the performance of the tMo

Remarks: algorithms is comparable. The average number of updates

1) The results ot Theorem 1. and the results 14.'5). for the EOBE algorithm was 160 for 1000 point data se-

14.26) ot Theorem 2. do not require the process to tie bta- quences. Thus. onl% l6't of the ,amples are used for up-

ble. However. it the process is unstable. then on a.,.ount date,. as ,.ompared to the ELS algorithm which updates

of finite precision effects. the matrix P(M may not stay at every sampling instant.

13
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Fig. 2. Average squared AR parameter estimation error for the EOBE and

ELS algorithms-Example I.
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Fig. 3. Average squared MA parameter estimation error for the EOBE andELS algorithms-Example I.

TABLE I

Total Number Total Number Average Average

Upper Average Average Number of Times 0* of Times 0* Final Final Sum
Bound -t. Tap Error of Updates is Out of S, is Out of E, Volume of Axes

0.5 0.031 160 7309 23952 - -
1.0 0.031 160 315 0 0.22 10.46
2.0 0.031 160 0 0 2.6 X 104 4
5.0 0.031 154 0 0 5.4 x 10' _65

25.0 0.031 153 0 0 2.1 x 10", 1537
100.0 0.0308 156 0 0 1.0 x IO"'  6303

The effect of different choices for the upper bound Il' %olume obtained when 0 2 5 is an indicat;on of the
on the performance has also been studied. For each alue fact that o'tt) is no longer positise and So bounding el-
of -Y2, the asymptotic average squared parameter error T lipsoids cannot be constructed.
was computed over 25 runs of the algorithm, according The performance of the algorithm. when the noise se-
to the formula quence { w(t) } has a Gaussian distribution. was evalu-

25 ated in a similar fashion. A constant value of .( = 25
T = 1 l 1000) - 0*1ii2 was used and the standard deviation of the noise was var-

ted. The results for 25 runs of the algorithm are shown in
Table II. It is clear that the unbounded noise has marginal

where 0j( 1000) is the parameter estimate at the 1000th effect on the parameter estimates
iteration in the jth run. The lo er bound on -, as .a.u- Finall), the tracking capability of the EOBE algorithm
lated from t4. 10c) is "t >- 8.54. The second .olumn ot wa, .ompared to that of the ELS algorithm. (with foreet-
fable I lists the different values ot Tobtained wvhen )" is ting factor 0.99) The same model "as used to generate
varied from 0.5 to 100. It is ,lear that the .enters of the 400 data points. The parameters were then changed by
bounding ellipsoids are insensitive to the value of ",. 150% and the next 400 points were generated Finally
since the tap error is almost ,onrtant. Hoeer. the final the last 200 points &sere generated bN using the original
i,,ze of the ellipsoids does depentd on -, . The negative parameters. The average quared parameter error was

14



-*~~ ta ndard X'lut t~ce' i:

ol Noise Tao, E.or, ., 'dt dues N. Out ol 5 itime(Lll; I 5 11ke

'I ____~~~~___ _ _ _ _9_ _ _ _ _

IO ( 1 1

WECIIE

0 ',200 400, 600 800 '006~O 200 -100 600 800 !000
Time Time

,Tie, 4. Tracking pertorinance ol the EOBE anu ELS .llgorns-atcrage 6 . .\rage %quarei NIA paraneter citimtion rrrir the IFOBE and

squared pararneier estimation error. ELS aieorithins-Exanple 2.

I~~~~u -Ci.2.rns and plotted in Figs. 5 and 6, respectively. The aver-
Not -101kage number of updates was 78 for 1000 point data se-

1. 10 quences.
0 For this example too. different values of the upper21 ~ .20 lOEbound -y. were used and no significant difference in the

quality of estimates, number of updates or convergence
rate was observed. Thus. it~is verified onceagain that a

F~e,5 ~30:ELS ~precise knowledge of the upper bound is not a prerequisite
~40'for satisfactory performance of the algorithmn.

_0 200 4200 -600 800- '000 v.C~~so
* e ae u re A R T im e V . C N L S O

Avrg qae Rparameter eitmation error tor the RUBE In A recursive parameter estimatinaertmhsbe
ELS algorithms- Evainple 2. extended tor ARIMA parameter estimation. The main fea-

tures of the algorithm are a membership set theoretic for-

evaluated over 25 runs and is showvn in Fig 4 Even mnulation and a discerning update strategy. Convergence
though the formulation of bounding ellipsoids is based on analysis ot the algorithm has been performed under the

* he, assumption that the parameters are constant. the sim- tsuth nsionr thatal the iei boundd. Tellmpsis reslsI ulation results show that the alp-orithm is able to accom- ot h nl i r htaltebudn lisiswl
mnodate changes in model parameters. Analysis of the cnantetu aaee.poie h rem~n

trucingabilty f th alorihm i curenty uderaverapae coefficients batihfy a condition. w~hich is analo-Nati n. ives ous to the SPR condition of the ELS algoridhm. In ad-
Etanple2-Nrrowban ARA 2 2~ rocss:The dition. the algorithmi Yields uniformly bounded at poster-
tpu daa {xir } re eneate bythefolowig dffe- tort predliction errors. With a persistence of excitation

priori prediction errors can then be established and the
ytt 0 .4Y1' - 1 0.95.1 t - 2) -~ t) parameter estimates are shown to con% erge to a neighbor-

* 0.86w( r - 1) - 0.43Iwit - hood of the true parameters. Simulation results show that
- the performance of the algorithm is comparable to the ELS

-Note that. in this ease. condition t4. IOb) of Theorem I is algorithm %% nile requiring far feN% er updates
violated. The noise sequence is uniformly distributed inI -1.0. 1.0 1. as in the first example. The upper bound APPENDI~x A
w.as bet equal to 25. The a'erage squared AR ind MA Proor or s3. 8) andl 3.9)t: The proof is along the lines
parameter estimation errors are caicultted o% er t%%enty fiNe of the proot of Lemmia 2 1 in 11I11
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Since N.>,minimizes dI ame \V.a mat G - otWtd 11pi) t11.t 11 < I. Thu.
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RECENT DEVELOPMENTS IN OPTIMAL BOUNDING ELLIPSOIDAL
PARAMETER ESTIMATION

Ashok K. RAO
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The Optimal Bounding Ellipsoid (OBE) algorithms are viable alternatives to conventional adaptive filtering
algorithms in situations where the noise does not satisfy the usual stationarity and whiteness assumptions. An
example is shown in which the performance of an OBE algorithm is seen to be markedly superior to that of the~recursive least-squares algorithm. Subsequently, an overview of some recent work in the area of OBE parameter
estimation is presented. A lattice filter implementation of one particular OBE algorithm is first described. The
extension of the OBE algorithm to the estimation of parameters of ARMA models is performed and the results

of a convergence analysis are presented. It is demonstrated through a simulation example that the transient
performance of the proposed algorithm it superior to that of the well.known extended least-squares algorithm.

1. Introduction

In recent years, there has been a resurgence of interest in an alternative approach to parameter
estimation, which has been termed membership set parameter estimation by some authors [1,2].
This approach is particularly appropriate when the probability distribution of the disturbances is
unknown, and a bound on the magnitude of the disturbances is available [2,3]. In contrast to
conventional system identification schemes (e.g. maximum likelihood, least squares etc. [4])
which yield point estimates of the parameters, a membership set algorithm yields a set of
parameter estimates which are compatible with the model, data, and noise bounds. This set of
parameters, which is usually a convex polytope in the parameter space, may become extremely
complicated to formulate and so it may be necessary to approximate the set.

In this paper, the discussions will be concentrated on the ellipsoidal outer bounding approach
which approximates the exact membership set at each instant by an ellipsoid in the parameter
space. The algorithms in this class [2,5-71 are temporally recursive and yield ellipsoids which are
optimal, in a sense to be defined later. The computational complexity of the Optimal Bounding
Ellipsoid (OBE) algorithms is much lower than that of the exact polytope bounding algorithms
[8] and non-recursive linear programming based algorithms (9]. The ellipsoidal formulation also
helps to make the analysis tractable. Furthermore, a discerning update strategy, which proves to
be appealing for recursive algorithms, evolves quite naturally in the optimization of the

0378-4754/90/$03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland)
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ellipsoids. A disadvantage of the OBE algorithnis is the possible looseness of the ellipsoidal outer
bounds.

The objective of this paper is to provide an overview of some recent developments and
applications of the'OBE algorithms. It begins by providing a brief review of the various OBE
algorithms. The superiority of the algorithms is A vis commonly used algorithms like the
Recursive Least-Squares (RLS) algorithm in situations where the noise does not satisfy the
conventional stationarity and whiteness assumptions will be demonstrated by means of an
example. In Section 3, an approximate lattice implementation of one of the OBE algorithms will
be described [101. An extension of the OBE algorithm to the estimation of parameters of ARMA
models will be presented in Section 4. A simulation example will be presented to compare the
transient performance of the extended algorithm to that of the well-known Extended Least-
Squares(ELS) algorithm.

2. The OBF algorithms

The OBE algorithms estimate the coefficients of autoregressive with exogeneous input (ARX)
processes described by [11]

y(t) = aly(t - l)-+ ... +ay(t - n) + bou(t )

+ blu(t- 1) + -.- +bmu(t- m) + v(t), (1)

where t is the integer sample number and y(t), u(t) and v(t) denote the output, input and the
noise~term, respectively. Thisequation can be recast as

y(t)= o*T4(t) + v(t), (2)

where
0* = [a,, a,), .... van, bog b,, ... ,3b.] T

is-the vector of true parameters, and

0 (t) = [y(t - 1), y(t - 2),..... y(t - n), u(t), u(t - 1 , ... u t m )]T

is the regressor vector. It is assumed that the noise is uniformly bounded in magnitude, i.e., there
exists a known y0 > 0, such that for all t,

V'(0 )< 76o (3)

Combining (2) and (3) yields
(Y(t)- 0* 2 '< (0 . (4)

Let S, be a subset of the Euclidean space IR" ", defined by

S, = (0: (y(t)- TP(t)) 2 < 7, 0 Fn+m+=) (5)

The OBE algorithms start off with a large ellipsoid, E0, in R" +"' + 1 which contains all admissible
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values of the model parameter vector 0*. After the first observation 1 (1) is acquired. an ellipsoid-
is found which bounds the intersection of E0 and the convex polytope S1. To hasten conver-
gence. this ellipsoid must- be optimized in some sense. say minimum volume, minimum trace
[2,7]; or by any other criterion [6]. Denoting the optimal ellipsoid by E,. one can proceed exactly
as before-with future observations and obtain a sequence of optimal bounding ellipsoids (E, }.
Thecenter of the ellipsoid E, can be taken as the parameter estimate at the tth instant and is
denoted by 0(t). If at a particular time instant i. the resulting optimal bounding ellipsoid would

i be of a "smaller size", thereby implying that the data point y(i) contains some fresh "informa-
tion" regarding the parameter estimates, then the parameter estimates are updated. Otherwise E
is set equal to E,-,, and the estimates are not updated. In essence,. the recursive estimatorI' consists of two modules, an information evaluator followed by an updating processor. At each
data point, the received data proceed to the updating processor only if the information evaluator
indicates that some fresh information is contained in the data. For details of the minimum
volume OBE algorithm, one may refer to, e.g., [2,7,12].

The subsequent discussions will be focused on a particular OBE algorithm [6]. The optimiza-
tion criterion for the OBE algorithm of [6] is defined in terms of a certain upper bound on the
estimation error. Such a criterion yields several advantages over not only the minimum volume
and minimum trace OBE algorithms, but also other membership set algorithms mentioned in
[12]. The updating criterion is simpler, and the presence of an information dependent
updating/forgetting factor enables the algorithm to track slow time variations in the parameters.
Analysis of the algorithm shows that if the input is sufficiently rich, as defined in [6], and the
noise is uncorrelated with the inputs then the prediction error is asymptotically bounded by the
noise bound and the parameter estimation error is bounded by a quantity proportional to the
noise bound. In addition, asymptotic cessation of updating is guaranteed in thefixed parameter
case. These properties are 7,ot apparent in the other membership set algorithms.

For the OBE algoridim of [6], the bounding ellipsoid at the t th instant is formulated as

Et= (9 E Rn+m
- : (0- 0 (1 ))Tp-(t)( 0 - 0(t)) < o2(,)} (6)

for some positive definite matrix P(t) and a non-negative scalar a2(t). The size of the bounding
ellipsoid is related to the scalar a2(t) and the eigenvalues of P(t). The update equations for
0(t), P(t) and c2(t), derived in [6], are as follows:

0(t) =0(t- 1)+ K(t)S(t), (7a)

8(t) =y(t) - O(t - 1),(t). (7b)

K(t) = XP(t - )4S(t)

S-X,+ XG(/)(7c)

G(t) = '(t)P(t - 1) 0(t). (7d)

P(1) 1 [I- K(t) dr(t)IP(t- 1), (7e)2(t) + X,0( , X'1X)2t
X1(1 - ) 2(t) (7f)

The optimal ellipsoid E, which bounds the intersection of E, - and S, is defined in terms of
an optimal value of the updating gain factor X, where 0 < X, < a < 1. with a being a user chosen
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upper bound on the updating gain factor. The optimum value of X, is determined by minimiza-
tion of a'(t) with respect to X, at every time instant. The minimization procedure results in a
discerning update procedure. In particular, X, is set equal to zero (no update) if

2 (t- 1), + 82 (t) < 2o .  (8)

On the other hand, if (8) is not satisfied, then the optimal values of X, is computed as follows:

X,=in(a, i),

with

aif 81(t) 0,
[1 -0(t)1/2 if G(t) 1,

V -- 1 r 1_ G (t) T__ /2)1 0 (9)
I -- G(1) 1 +/(t)((t) 1) if + f(t)(G(t)-l)>O,

a if 1 + fl(t)(G(t)- 1) <0

and

P3(t) = (y - 02(t - 1))/02(t). (10)

The recursions (7), and the selective update strategy, along with the initial values

P-1 (0) =I, 0(0)= 0 and u2(0)-= 1/A with A K 1 (11)

form the OBE estimation algorithm. The value chosen for the upper bound yo need not be a tight
bound on the noise magnitude since the parameter estimates are not affected by an overestima-
tion of'the noise bound (13, p. 521. Overestimation of the noise bound however, will cause the
bounding ellipsoids to be larger. Underestimating the noise bound may cause a2(t) to become
negative at some instant, thereby causing the bounding ellipsoid to vanish. In this case, a
recovery procedure may be activated to either increase the size of the ellipsoid E_ , or increase
the width of S, by increasing to.

A striking feature of the OBE algorithms is their similarity to the Recursive Weighted Least
Squares (RWLS) with forgetting factor algorithm. In fact the OBE algorithm of [6] can be
considered a special case of the RWLS with forgetting factor algorithm with a weighting factor
X, and a forgetting factor 1 - X,. However, the intelligent selection of the weighting factor X,
makes the actual behavior of the OBE algorithms quite different from that of the RWLS.

The RLS algorithms have become increasingly popular in the fields of adaptive signal
processing and adaptive control. It is therefore worthwhile to investigate situations in which the
use of the OBE algorithms would be preferred to the RLS algorithms. For example, those cases
in which the statistical nature of the noise is unknown or in which the noise does not satisfy the
usual stationarity and whiteness assumptions seem particularly appropriate for the OBE al-
gorithms. Milanese and Belforte [9] have demonstrated the superiority of the Minimum Uncer-
tainty Interval Correct Estimator (MUICE) over the least-squares estimate for a third-order
moving average model where the noise is proportional to the magnitude of the output. A
comparison between the OMNE algorithm and least-squares for a non-linear biological model
has been presented in [14]. However the OMNE and MUICE are non-recursive and more
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computationally intensive than least-squares algorithms and it is perhaps fairer to compare theIRLS algorithms with the OBE algorithms which have similar computational complexity. For the
sake of illustration, we present an example below, in which the noise is quasi-stationary [4], and
compare the performance of the OBE algorithm of [61 to the standard unweighted RLS
algorithm.

Example- 1. The following- ARX (2,2) model is considered

y(t) = -0.4 y(t- 1)-0.85 y(t- 2)-0.2 u(t) - 0.7 u(t- 1)+o(t),

where the measureable input u(t) is white and uniformly distributed in [-1, 1] and v(t) is a
sinusoid in white noise w(t). Such a situation could arise when the observations are affected by
power supply hum or other electromagnetic interference. The following model for v(t) is

assumed:

ii v(t) = (1 - fl)w(t) + flsin(irrt/10).

The white noise sequence wQ) is also uniformly distributed in 1, 1] and is uncorrelated with
the input sequence. The value of P is varied from 0 to 1 and for each value of A3, ten Monte Carlo
runs of the OBE and RLS algorithms are performed with data records of 500 points each. The
value of the upper bound on the updating gain factor is a = 0.5 and the upper bound on the
noise is to = 1.0. The final parameter estimation error (0* - 0(500 ))T(o* - 0(500)) is averaged
over the ten runs and is displayed in Fig. 1 for P3 ranging from zero to one. Notice that the
parameter estimates of the RLS algorithm are unacceptable for larger values of 13. In contrast,
the performance of the OBE algorithm is relatively constant over the range of 13. The perfor-
mance of the OBF Agorithm has also been observed to be superior to the RLS algorithm for
other cases in whicu .he noise is impulsive and bursty [13].

In conclusion, it can be noted that the similarity of the OBE algorithms to the RLS algorithms
facilitates the analysis of the algorithms and eases the development of numerically superior and
faster implementations of the OBE algorithms. Analysis of finite precision effects in the OBE
algorithm of (61 has been performed in [13,15] and upper bounds on the parameter estimation
error due to finite word-length computations have been derived. It has also been shown that the
time recursion for the matrix P(t) in the OBE algorithm of [6] is less susceptible to round-off

+£
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Fig. 1. Mean-squared parameter estimation errors of the OBE and RLS algorithms in white noise mixed with
sinusoidal noise (Example 1).
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errors than the corresponding recursion in the RLS algorithm. As in the RLS case, Bierman's
UDUT factorization can be performed straightforwardly, to update the P matrix in the OBE
algorithm, in a numerically stable fashion. Systolic array implementations of the algorithm have
been reported in [16,17]. Thus there exists the potential to apply well established techniques from
the adaptive filtering and system identification literature to bounding ellipsoid algorithms.

3. Lattice implementation

Lattice-filter implementations [18] of adaptive algorithms have become popular for a number
of reasons. Among others, the more prominent ones are: (1) the modular structure of lattice
filters which renders them particularly suitable for VLSI implementations; (2) the low sensitivity
of the filter to numerical perturbations in the lattice coefficients- and (3) the fact-that the lattice
coefficients are independent of the filter order, thus making it-possible to add successive lattice
stages or subtract existing ones without recalculating the already existing coefficients. In this
section, an outline of the lattice-filter formulation of the OBE algorithm of [6] is presented. This
lattice-filter implementation appears to retain all the above mentioned advantages. Details of the
implementation and simulation results have been presented in (10] and (19].

Consider the following well-known RLS lattice recursions [18] for an AR model

)- k._(t- 1)r (t-1) for m= 1, 2,..., N, (12)

rt) 1)- ,,_(-1)e,._(t) for m= 1, 2,..., N, (13)

where, eo(t)=ro(t)=y(t), em(t) is the forward prediction error of order m, r(t) is the
backward prediction error of order m and kb and k' are, respectively, the mth backward and
forward partial correlation (PARCOR) coefficients. Iterating (12) up to order m = N yields

ev (t) = y(t) - k b(t- _1)r0(/-- 1) - k b(t -_ 1)rl(/ - 1)

- kb,. 1(t - 1)rN..(t- 1). (14)

Thus the Nth order predictor of y(t) is I
y(t/NV) =kbt 1)o(t _ 1) + k b(t - _1)rl(/-- 1) +' +k b_1(t -  1cl(t- )

(15)

Compare (15) to the equation for a transversal predictor given by

y(t/N) =al(t- 1)y(t-1) + a2(t- 1)y(t-2) +... +aN(t- 1)y(t- N)

and let Y, = (0,..., y(O), y(l),..., y(t)) and R,., = (0,..., r(0), r.(1) .. r(t)), the optimal
predictor for the RLS transversal case can be thought of in geometrical terms as the projection of
Y, onto the regressor space spanned by Y-,, Yt-2,._ Y,-N. The backward error vectors
Rot-.1, R. 1- 19.., RN-UtI span exactly the same space with the difference that they are
mutually orthogonal, and the optimal predictor for the RLS lattice case is again the projection of
Y, onto the above regressor space. Thus the predictors for the RLS lattice and transversal case
are identical.

In general, the OBE estimates at every time step are not identical to the RLS estimates.
Nevertheless, the approximate minimum mean square residual property of the ellipsoidal center
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(20] justifies the imposition of the lattice structure (12) and (13) on the forward and backward
errors of different orders for the OBE algorithm. Therefore. inprinciple, the OBE algorithm can
be used to calculate the transversal filter coefficients and then a step down procedure described
in [18, Section 4.2] can be used to calculate the optimal PARCOR coefficients. However, this
method will involve an excessive amount of computation. Furthermore, many of the advanta-
geous features of the lattice structure mentioned earlier will be lost since the transversal filter
coefficients are being used to obtain the lattice coefficients. It is thus preferable to apply the
OBE in such a way'that. at every time step, the estimate of the PARCOR coefficients is obtained
directly. This problem can be tackled by working in the space of PARCOR coefficients instead
of the space of the transversal filter coefficients. More specifically, define the ellipsoid

= ( o0': 0'p' "W -, }

and the-convex. polytope

S (0': (,(i) -oT'( 1)) <7.6,

where
b" b_ 1) r t -It1)T

Po=I and A<<1.

If the true PARCOR coefficients are defined to be the ones obtained by applying the step down
procedure to the true AR parameters of the system, and if the true PARCOR coefficients have
been used to recursively obtain 0'(t) from (12) and (13), then each one of the convex polytopes
S,', t= 1. 2..... T, will contain the true backward PARCOR coefficient vector 0"*. This is
because 0 '*T'(t) - 0 *T,(t). The OBE algorithm can now be applied with the parameter vector
0 set equal to the PARCOR coefficient vector 0' and the regressor vector 0(t) set equal to the
vector of background errors ,'(t) thus yielding the time update for the backward PARCOR
coefficients. However, it is clear from (13) that, in order to obtain the backward errors of
different orders at time t, the forward PARCOR coefficients at time t - 1 are required. The time
update equations for the forward coefficients can be obtained as follows.

Iterating (13) yields
),(t -Nv) - ko(t -.,)eo(t - N + 1)
- kf(t -N:+ )e1(t - N+2) .... kfl(t ,1) eNv-l(t).

Since the backward errors are expected to be bounded, one can therefore define a convex
polytope in the space of the forward PARCOR coefficients as

S"(t)=0N": t- N)<OIT*"()'

where

0"=(kf, k'.... k,_1) r and ."(t)=(eo(t-N+ 1), el(t -N+2),... e.I(t))".
'2

-o is set higher than It' to ensure that S"(t) contains the true forward PARCOR coefficient
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vector. It is worth noting that the exact value of '2 is not critical here as. according to our
experience, the algorithm is relatively insensitive to the values of such bounds. The algorithm
formulated by (7) with 0 = 0" and = p" can now be applied to obtain the time updates of the
forward PARCOR coefficients. An important point to be noted here is that for the backward
error recursions at time r, the estimates k'(t - 1), kf(t - 1). k'_ 1 (t - 1) are required. How-
ever, the OBE time update at time t - 1 has made available the coefficients ko(t - N), kf(t - N
+ 1),..., kg.,(t - 1). The former set of coefficients thus has to be approximated by the latter
set. This is a valid approximation for small N (as verified by simulation) because then k,,(t - 1)
is approximately equal to k,,(t - N + m).

For the stationary case, since the backward and forward coefficients are expected to be equal,
the OBE needs to be applied only once to the forward error (i.e., to the backward coefficients)
The algorithm complexity is thus the same as that of the direct implementation. In general, the
computational complexity of the lattice implementation is twice that of the direct form because
the OBE algorithm is applied two times at every iteration. However, the order of computation is
still O(N2).

4. Extension to ARMA models

Autoregressive moving average (ARMA) models are described by difference equations of the
form

y(t) = ay(t -1) + ... +ay(t - n) + w(t) + cjw(t - 1) + ... +c,w(t - r) (16)
where y(t) is the output and w(t) is an unobservable white noise sequence. This equation can be I
recast as

ye = 0 *T'( 1 ) + w(t), (17)
where

0* = [a,, a,.. an, c1 . .... (18)
is the vector of true parameters, and

eO(t) = [y(t - 1), y(t - 2),..... y(t - n), v(t - 1) . .. w(t - r)] T

is the true regressor vector. It is assumed that the noise is uniformly bounded in magnitude. i.e.,
there exists Yo > 0, such that

IV2(t) < ' for all t. (19)

Since the values of v(t) ae unknown, the OBE algorithm, in its present form. cannot be used to
estimate the parameters. However, if estimates of iv(t) are used in place of the actual values, as
in the ELS algorithm, mien the algorithm (7) can be used to construct a sequence of optimal
bounding ellipsoids. A natural estimate of w(t) is the a posteriori prediction error (also termed
residual by some authors)

C(t) =y(/) - OT(t),(t), (20)

where now

(t) =[y(t -1), y(/- 2)...., y(t-n), (t - 1)..... (t - r)IT. (21)
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The extended optimal bounding ellipsoid algorithm (EOBE)[(13.21] thus consists of (7) and' the
same selective update strategy, with the true parameter vector and the regressor vector as defined
in (18),and (21) respectively. The initial conditions (11) are modified to

P-(0)=M- . 0(0)=0 and a2(0)<y 2 , withM>>1. (22)

This choice of initial conditions still ensures that the initial ellipsoid Eo will contain 0* and
makes the algorithm amenable to analysis. It also simplifies the formula for determining the
updating gain factor. In particular. X, is always less than unity,, hence there is no need to
introduce an -upper bound for the updating gain factor. Also note that y2 in (22) is different
from 7yo in (19).

Analysis of the EOBE algorithm. It is easy to see that, since estimates of w(t) are used in the
regressor vector, there is no guarantee that all the convex polytopes S, t = 1, 2,..,, will contain
0", However, it has been shown [21] that all the convex polytopes will contain 0*' if (i) E
contains 0', (ii) the true moving average coefficients satisfy a certain upper bound (analogous to
the Strictly Positive Real (SPR) condition in the ELS-algorithm), and (iii) the threshold y2 is
chosen appropriately [21], The conditions are of course only sufficient conditions, and the
algorithm has been observed to perform well in several examples where the conditions (ii) and
(iii) were violated.

Using this result, the following bounds on the prediction error and parameter estimation error
can be obtained (see [13,211 for details).

(a)

lim (2(tj) exists,

where { t, } is the subsequence of updating instants of the EOBE algorithm.
(b) Uniformly bounded a posteriori prediction errors:

C( t) -y y, for all time instants t.

Furthermore, if a certain persistence of excitation condition holds, then for any finite k,
(c)

lim 11 O(t) - O(t - k)II =0.
1- 0

(e) Asymptotically bounded a priori prediction errors:

8 ( [o, - ]

(f) Asymptotically bounded parameter estimation eror-.

0(t) - 0*110, 2YA1 + , IC, IY/a4]
where y' is as in (19) and a4 is a positive constant.

The above results do not require the system (16) to be stable or the noise sequence w(t) to be
white. However our simulation experience has shown that the parameter estimates are usually
not close to the true parameters if the noise is colored, but such is also the case for the ELS
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Fig. 2; Mean.squared parameter estimation errors of the-EOBE and ELS algorithms (Example 2).

algorithm. The EOBE algorithm performs well when the noise sequence w(l) is white. In
particular, the transient performance of the algorithm for stable and unstable ARMA type
systems with w(t) white appears to be superior to that of the ELS algorithm. This observation is
illustrated by the following.

Example 2. The following ARMA (3,3) model is considered

y(t) = -0.6 y(t - 1) + 0.2 y(t - 2) + 0.4 y(t - 3) + w(t)

-0.22 w(t- ) +o.17 w(t- 2)-o.1 ,(,- 3).

The white noise sequence w(t) is uniformly distributed in [-1, 1]. Ten Monte Carlo runs of the
OBE and ELS algorithms are performed with data records of 50 points each. The threshold
, = 25. The parameter estimation error at each instant, (0* - 0 (t))T( 0 * - 0(t)) and the a priori

prediction error are averaged over the ten runs and displayed in Fig. 2 and Fig. 3 respectively.
The parameter estimates of the ELS algorithm tend to wander outside the stability region in the

20

' ELS 10-1
o 0 ,EOSE ',,, ,o. ' I / .I ',AL" ,  ' '

0 10 20 30 40 50

* It t

Fig. 3. Mean-squared prediction errors of the EOBE and ELS algorithms (Example 2).
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I transient stage, thus causing unacceptably high prediction error bursts. The inherent stability
_- mechanism of the ELS algorithm, however. ensures :that the-estimates do return to the stability

. region. The transient estimation error of the EOBE algorithm, in contrast, is well behaved. This
l seems to provide a good incentive for employing EOBE, rather than ELS, when few data are

= :available.

-5. Conclusion

It has been shown that, on account of their low computational complexity and analyticalI tractability, the OBE algorithms can -serve as alternatives to .standard adaptive filtering al-
gorithms in situations where the noise is unknown but bounded. As in the least-squares case, the

I OBE algorithm can be implemented in a lattice form and can thus acquire all the advantages of
the lattice structure. The extension to the colored noise case is performed as in extended least
squares, and sufficient conditions for "convergence" of the algorithm have been outlined. The

1 . lransient performance of the algorithm, in terms of parameter estimation error and prediction
error, has-been observed to be superior to that of the ELS algorithm.
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Abstract

Analysis of error propagation in an OBE algorithm is performed which shows that the
errors in the estimates due to an initial perturbation are bounded. Simulation results

demonstrate that the OBE algorithm can perform better than the conventional RLS in small
word-length environments. The analysis presented in the papercould also- be applied for the
finite precision analysis of recursive weighted least-squares algorithms.
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I INTRODUCTION

Set Membership Parameter Estimation tSMPE) algorithms [1-3] are a class of estimation

algorithms which yield a set of feasible parameter vectors consistent with the observations,

model structure and noise constraints. This is in contrast to least-squares type or stochastic-

gradient-based algorithms which compute point estimates of model parameters.

The SMPE- algorithms do not assume any knowledge of the distribution or any other

statistical.properties of the noise process. However it is assumed that the noise is bounded,

either in magnitude or energy. The performance of SMPE algorithms is often superior to the

least-squares algorithms for cases when the-noise process does not satisfy the usual white and

stationary assumptions [41 and when the sample size is small [5]. Furthermore, these

algorithms yield 100% confidence regions for the parameters even for small sample sizes, in

the case of batch algorithms, and at every time instant with recursive algorithms.

The behavior of least-squares and stochastic-gradient-based adaptive filtering algorithms in

limited precision environments has attracted a lot of attention [6], [7]. However, in the case of

SMPE algorithms, the issue of finite word-length effects has been largely ignored till recently.

In [8], the potential numerical problems which can arise with the exact cone updating (ECU)

algorithm are discussed and a robust modification is suggested. In this paper, finite precision

effects on one of the Optimal Bounding Ellipsoid (OBE) algorithms are studied through

analysis and simulations. The OBE algorithms obtain recursively, ellipsoidal outer bounds of

the membership set of parameters of ARX models with bounded noise. The algorithms have

the distinctive feature of a discerning update strategy.

A brief description of the OBE algorithm of [9] is given in Section Ul. A first order analysis

of the error propagation in the OBE algorithm is then performed which shows that the error in

the estimates at any time instant due to an initial perturbation is bounded. The finite precision

effects are also analyzed from an alternate geometric point of view. Results of a fixed point

type simulation of the algorithm are presented which show that the OBE algorithm yields

consistently good estimates over a large range of word-lengths. In fact, the performance is

superior to that of the RLS algorithm for small word-lengths.

I
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Ii II THE OBE ALGORITHM
The OBE algorithms 11,[91 estimate the coefficients of ARX processes described by

where y(t) = O6T (t) + v(t) (2.1)
where

fl D(t) = [y(t-1l), .... y(t-n), u(t), u(t- 1), ..... u(t-m)] T (2.2)

is the regressor vector consisting of past outputs (y(t)) and present and past inputs (u(rt , and
0*is the true parameter vector, specifically 0 = [a1 ,..., an, b0 ,.., bm]T, [1,9]. The noise

sequence (v(t)) is assumed to be uniformly bounded with a known bound 7- 0, i.e.,
V 2 (t) < y2  for all t (2.3)

The OBE algorithms obtain, recursively, a "decreasing" sequence {Ej) of optimal outer

bounding ellipsoids in the n+m+l dimensional parameter space. The ellipsoid Et can be

expressed as
Et = (0 = Rn+m+1 : [0 - 0(t) ]T P'1(t) [0 - 0(t)] < 02(t) (2.4)

where P-t(t) is a positive definite matrix and 8(t) is the center of the ellipsoid which can be

taken to be a point estimate of the parameter vector. The factor d2(t) is a positivn. time-varying

Iscalar which along with P(t) determines the size of Et. Time recursions for P(t), 8(t) and a2(t)

are given below, see [9] for a derivation of these equations.
*Pt I j [P(t1) - .tP(t- 1)((t)4T(t)P(t- 1) 1(2.5)

- t-1 -Xt + %tcDT(t)p(t1)DT(t)(

a 2(t) = (1-Xt) a2 (t-1)+ Xt y2  Xt(i-Xt) [y(t)-4DT(t)0(t - 1)] 2I-Xt+ .t cDT(t)p(t" 1)cDT(t) (2.6)

0(t) = 0(t-l) + Xt P(t)4(t)[y(t)-T(t)0(t-1)] (2.7)

The initial conditions are chosen to ensure that 0* r E0. A possible choice which improves the
robustness of the algorithm to finite word-length effects is

P(O) = M I, and a2(0) = ,2 where M >> 1. (2.8)

The optimal ellipsoid E, is defined in terms of an optimal value of the updating factor Xt e [O,c)

where a <1, is a user chosen upper bound on the updating factor. For the OBE algorithm of

[9], the optimum value X1 is determined by minimization of 0 2(t) with respect to Xt at every

time instant. The minimization procedure results in a discerning update procedure. In

particular,
if ay2 (t-1) + 52 (t) <_ y2 ? = 0 (no update) (2.9)
else X= min (a, ca(t)), with (2.10)
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(Il- .B(t))/2 if G~t) =i
(t) -=(2.11)

1 [ 4- G(t) ifG(t) # I

where
8(t) = y(t)- 0T(t- I )4(t) (2.12)

G(t) = 1T(t)P(t-1)1(t) (2.13)
and

3(t) (y2 - a2(t- 1) )/ 82(t) (2.14)

The above recursive relations (2.5)-(2.7); and the updating factor formula (2.9)-(2.14) form

the-OBE estimation algorithm.

III ERROR PROPAGATION

The error propagation properties of the OBE algorithm are analyzed here by focusing on the

propagation of a single error in 0(t) and P(t) to future instants. Assume that at time instant to

.there is a perturbation in the estimates due to round-off error, yielding 0'(to)= 0(to) + AO(to)

and P'(to) = P(t0)+AP(t), wherethe primed quantities are theperturbed ones. We investigate

in this section the effect of these errors on the estimates 0'(t) and P'(t) at t > to, assuming that

the computations are performed with infinite precision. Similar studies have been performed

by Ljung and Ljung [10] in their investigation of the error propagation properties of RLS

algorithms. Though the update equations of the OBE algorithm are similar to those of the RLS

algorithm, the presence of the updating factor as a discontinuous function of the estimates

complicates the analysis. Employing a first order perturbation analysis, an upper bound on the

error in the estimates due to finite precision computations can be obtained as described below.

Theorem 1. If the following assumptions hold:

(i) The matrix P(t) is well conditioned, i.e. there exist positive Tr1 and 712 such that

0 < T11 Xmin [P(t)] and Xmax [P(t)] -< T12 for all t _0 (3.1)

where Xmi[.] and a refer to minimum and maximum eigenvalues respectively.

(ii) The ARX process is stable and has bounded inputs, thereby implying the existence of a

positive K such that
cDT(t)4(t) _ K for all t > 0 (3.2)
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Qii) The-unperturbed algonthm yieids bounded preaiction errors. i.e.. there exists an h >0, s.t.

I 5(t) I< h for ailit>O0 (3.3)

(iv) There exists an integer M such that if the unperturbed algorithm has M updates in an

interval of time, then the perturbed versiou updates at least once in that interval,

(v) At the updating instants of the perturbed-algorithm, a lower bound p is set for the updating

'factor Xt', where-p is a suitably small positive number.

Then the error between the perturbed and unperturbed quantities at the updating instants

(tk } of-the perturbed'algorithm is bounded as

iiAP(tk)l 1"1, ,) (1.P) t IIAP(0)II +Tj; (jC 1) max AX, M (3.4)~/M

- 1-u~k u p

iiAO(tk).ll_ < (l p)kM -1 iiAO(t0 ) II + T12 h K 1 2 max 1A XtI [ l- +1- - ] +

112 1:5j!k ~j p (3.5)
h K 1 2 - max IIAP(t.)II

1, 1_j<Sk j

where il and 712 are as in (3.1); I_x_l is used to denote the largest integer less than x and 11.11 is

used for both the euclidean vector norm and the compatible matrix norm.

Proof: See [11].

Remarks

(1) The first term in (3.4) and (3.5) reveals an exponentially decaying effect of the initial

perturbation. The second term depends on the error introduced by the initial perturbation in the

calculation of the updating factor. The additional error term in (3.5) is due to the errors in P(t).

(2) Assumptions (i) and (iii) have been shown to hold in [9] if the system input u(t) and the

noise v(t) satisfy certain persistence of excitation type of conditions.

(3) Assumption (v) is a technical device required to ensure that the homogeneous parts of (3.4)

and (3.5) are exponentially stable. If p < 0.001, then in practice the values of Xt at the

updating instants will usually be larger than p.

(4) Note that the analysis of error propagation has ignored the effect of round-off errors in

c.,,nputations. However, since ,ht. homogeneous parts of (3.4) and (3.5) are exponentially

4 
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stable, the errorsat any time instant due toroUnd-off errors created at previous time instants

would be, bounded , [ 10].

iV EFFECTS. ON THE BOUNDING ELLIPSOID

In this section, the effect of round-off errors (in one iteration) on the resulting bounding

ellipsoid is studied. More specifically, we ask the-following question: If 0°  Et-1, can errors

in the computation of Et (i.e., computation of 0(t), P(t) and a2 (t)) cause 0* 5 Et.

Define (t) 0(t)-O*. Then from (2.7)
g~t) = (-1 P(t)(D(t) 5(t) + A1 (4.1)

where Al is the round-off error. Similarly from (2.5a)

P-'(t) = (l-.t) P-1(t..l) + X 1t(t) T(t) + A2  (4.2)
and:frorf-(2.6)-

0 2(t) = (1-%t) ;2 (t-1)+ Xt y 2 _+ A3 (4.3)i-xt+ Xt T(t)P(t- 1)(DT(t)
Define

At = (t-1)+ Xt P(t)c1(t)8(t) (4.4)
and

Bt = (1-kt) P-1(t-1) + X (D(t)(DT(t) (4.5)
Then, after neglecting second and higher order terms in A1 and A2, it can be shown that

V(t) = AtT Bt At + AtTA2At + AIT Bt At + AtT BtAI (4.6)
where

V(t) =4(t) P-1(t) ;(t) (4.7) I
Expanding AtT Bt At and using (4.3) yields

V(t)-a 2(t) = (l-IXt) [V(t- 1)-02(t- 1)] + ?,t [v2(t)-y 2]
+ 2AIT Bt At + AtTA2At +A3  (4.8)

From the-definition of Et it is clear that 0e Et if and only if V(t) _ C;2 (t). Thus if the errors

Al, A2, and A3 are large enough, it is possible that 0* 1 Et. A sufficient condition for 0* e Et

is I 2AIT Bt At +AtTA 2At +A31 <  Xt [1 2 
- v2(t)] (4.9)

If X = 0 then since no update occurs 0* e E, automatically. The condition (4.9) shows that if

the errors due to finite word-length computations are small enough then 0E El. Furthermore, I
by setting 12 higher than the actual bound on the noise, the robustness of the algorithm with

respect to finite precision effects can be increased at the expense of increasing the size of the

bounding ellipsoids. I
5 35 1



V SIMULATION STUDIES

A fixed point implementation ofthe OBE algorithm was simulated by assigning a fixed

number of bits (ibit) to represent the fractional part of the algorithmic variables. By varying

I ibit a fairly accurate portrayal of the behavior of the algorithm in a real-world restricted word-

length environmentrcan be obtained. A similar scheme has been used in [12] to characterize the

-performance of the RLS algorithm. The noise sequence {v(t)} and the input sequence {u(t)} are

generated by a pseudo-random number generator with a uniform distribution in [-1.0,1.0].

The upper bound 72 is set equal to 1.0. A value of a = 0.1 was used since it yielded a

I satisfactory convergence rate and inhibited overflows in the update equation for P(t). The

parameter estimates are obtained by applying the OBE, RLS and EWLS (RLS with weighting

factor X =0.99) to 1000 point data sequences. For the OBE algorithm, the centers of the

optimal bounding ellipsoids are taken to be the estimates. Ten runs of the algorithms are

performed on the same model but with different noise sequences. The number of bits used for

I the fractional part, ibir, is varied from 16 down to 6 bits and the average of the parameter error

10(l000)-0* 1I 2 is computed for each value of ibit.

Example 5.1 (Fig. 5.1) An ARX(2,3) process

y(t) = 1.6y(t-1)-0.83 y(t-2)+0.14 u(t) +u(t-1) +0.16 u(t-2) +v(t)

The average tap error of the OBE algorithm appears constant as ibit varies from 16 to 8 bits.

Ii The P matrix became negative definite for ibit = 6. The RLS and EWLS algorithms do not

work well for ibit <. 10. In fact P became indefinite for ibit <_ 14, in the EWLS case.

Example 5.2 (Fig. 5.2) An ARX(10,10) process

The OBE algorithm worked well for ibit 12. However for smaller values, P became

indefinite and overflows occurred. For the RLS case, P became indefinite for ibit < 16. In

order to study the performance of the OBE algorithm at smaller word-lengths, a UDU'

factorization of the P matrix was performed. The OBE update equations are identical to the

update equations of the weighted RLS algorithm with weight Cxt = ,t, and forgetting factor X(t)

= (1-Xt) and hence the UDU' form of the OBE can be easily developed [13, pg. 334]. The

UDU' form of the OBE algorithm is then compared to the UDU' form of the RLS algorithm.
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Thesimulation results show that for larger word-lengths, the performance of the RLS

algorithm is superior.. For smaller values of ibit, however, the average parameter estimation

erroris about the same for both the OBE and the RLS algorithms.

Discussions

Example 5.2 shows that the performances of the UDU' versions of OBE and RLS

algorithms are comparable at smaller word-lengths. The superior performance of the

straightforward implementation of the OBE algorithm, as compared to the RLS or EWLS

algorithms at smaller word-lengths is therefore primarily due to the superior numerical

properties of the recursion for the matrix P(t). The update equation for the RLS algorithm with i
a forgetting factor X is

TI

X + 0T(t)P(t" 1) (t) (5.1)

The corresponding equation for the OBE algorithm can be rewritten as

P(t) = [ - P(t]) 4 O)) (t) P(t-1)
1-.%T 1-) t  (5.2)
- + 4 (t)P(t- 1)0(t)

Since 1- X plays the same role in the OBE algorithm as does X in the RLS algorithm, the only

difference between (5.1) and (5.2) is that the factor (1 - X , )/ X, appears in the denominator of

the term within braces in (5.2) as opposed to the corresponding term X in (5.1). The

degradation of performance occurs primarily because the term within braces becomes indefinite

on account of round-off errors. Since Xt is usually much smaller than unity, the term which is

being subtracted from the identity matrix in (5.2) is much smaller than the one in (5.1). Thus I
P(t) in the RLS algorithm has a greater tendency to become indefinite than the P(t) in the OBE I
algorithm. This observation has been confirmed by examining the eigenvalues of P(t), for runs

in which the RLS algorithm performed poorly. I
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I VI CONCLUSION

I. The analysis of error propagation in the OBE algorithm has shown that the algorithm is

stable- with, respect to small computational errors. As in the RLS case, the robustness of the

algorithm is due to the presence of an-updating gain/forgetting factor. Stability of the algorithm

has also been viewed from an alternate geometric approach. The analysis shows that the

bounding ellipsoids are valid bounds for the membership sets as long as computational errors

are not too large and that the robustness of the algorithm can be increased by increasing the

value of the noise bound. Simulation results show that the OBE algorithm is indeed stable for

3 moderate word-lengths and that the mean parameter estimation error is relatively constant over

a wide range of word-lengths. In fact, it was observed that the performance of the OBE

algorithm is superior to that of the RLS algorithm for small word-lengths.
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TRACKING CHARACTERISTICS OF AN OBE PARAMETER

ESTIMATION ALGORITHM"

Ashok K. Raol and Yih-Fang Huang-'

Abstract

Recently there. seems to have been a resurgence of interest in recursive parameter

bounding algorithms. These algorithms are applicable when the noise is bounded and the

bound is known to the user. One of the advantages of such algorithms is that 100%

c6nfidence regions (which are optimal in some sense) for the parameter estimates can be

obtained at every time instant, rather than asymptotically as in the least-squares type

algorithms. Another advantage is that these recursive algorithms have the inherent

capability-of implementing discerning updates, particularly that of allowing no updates of

parameter estimates in the recursion. This paper investigates tracking properties of one
such algorithm, referred to as the DHOBE algorithm. Conditions which ensure the

existence of these 100% confidence regions in the face of small model parameter variations

are derived. For larger parameter variations, it is shown that the existence of the 100%

confidence regions is guaranteed asymptotically. A modification is also proposed here to

enable the algorithm to track large variations in model parameters. Simulation results show

that in general, the rnod(lied algorithm has tracking performance comparable, and in some

cases superior, to the exponentially weighted recursive least-squares algorithm.
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IEEE Transactions on Signal Processing.
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I. INTRODUCTION

Performance analysis of adaptive filtering algorithms Is usually done by assuming that

the unknown system being modeled is time-invariant. However, in practice, adaptive

filters-are often used in time varying environments. It is thus important to investigate the

performance of these algorithms, allowing the system model parameters to vary with time.

A considerable amount of attention has been paid to this problem in the adaptive filtering

literature, with analysis of varying amounts of rigor being performed mainly for the LMS

and RLS algorithms, see, e.g., [1-51.

This paper investigates tracking properties of a recursive estimation algorithm, referred

to hereafter as the DHOBE (Dasgupta-Huang Optimal Bounding Ellipsoid) algorithm 16].

this algorithm belongs to a class of bounded-error estimation algorithms termed Set-

Memr~ership Parameter Estimation (SMPE) algorithms [7],[81. The membership set is a set

of parameter estimates which are compatible with the model of the underlying process, the

assumptions on noise, and the observation data. At the first glance the DHOBE algorithm

appears to be very similar to the recursive least-squares (RLS) algorithm. However, in

contrast to the RLS algorithm which obtains an optimal solution (in the sense of minimum

mean-square estimation error) to the underlying problem, the DHOBE algorithm is

developed by using a set-theoretic framework, namely, the notion of optimal bounding

ellipsoids. This causes the algorithm to behave quite differently from the RLS algorithm in

many ways. In addition, the algorithm incorporates a data dependent forgetting factor

which results in a discerning update strategy.

In case of time-varying systems, it is important to ensure that the time varying true

parameters I0*(t)) are contained in the bounding ellipsoids {Et) of the DHOBE algorithm.

In this paper, such conditions will be derived. It will also be shown that if a jump in the

true parameter vector 0*(t) causes it to fall outside the bounding ellipsoid, then provided

that the jump is not too large the bounding ellipsoids will move towards 0(t) and I
eventually enclose 0*(t) again. A rescue scheme is proposed which will guarantee the

I
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existence of bounding ellipsoids in the face of large parameter variations. Some techniques

for applying different parameter bounding algorithms to time %arying systems have been

reported by Norton and Mo in [91. One of the techniques suggested for the OBE type

algorithms is to use a fixed scaling factor to inflate the bounding ellipsoid with every new

data point. Another technique which can be used if prior knowledge of the parameter

increments is available is to vector sum the bounding ellipsoid with the set describing the

parameter variation 191. If the extent of parameter variation is unknown, as is often the

case, the first technique will have to use a large scaling factor to cope with possibly large

parameter variations and consequently the parameter bounds will be loose. In contrast, the

rescue procedure described in this paper can automatically detect and accurately compensate

for large parameter ju nps.

Simulation results are presented to show that the DHOBE algorithm is able to track

slow and abrupt variations in the parameters. The tracking performance, in terms of

parameter estimation error, is comparable to the RLS algorithm with a forgetting factor.

Abrupt changes in the parameter can in some cases be tracked better by the DHOBE

algorithm than by the RLS algorithm.

II. THE DHOBE %,GORITHM

One of the seminal works in the estimatiorh of parameter bounds is that of Fogel and

Huang [10]. The algorithm of [10] recursively obtains ellipsoidal outer bounds to the

membership set. The model structure consider,.d is the following ARX model:

v(t) = O*Tct(t) + v(t) (2.1)

where
09= [aI a2 ... an '9o bl ... bmJT

is the true parameter vector and

c1(t) = Iy(t-I) y(t-2) ... y(t-r) u(t) u(t-1) ... utt-in)IT

is the measurable regressor % ector. The noise v(t) is assumed to be uniformly bounded in

magnitude with a known bound y. i.e..
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vtt) I y (2.2)

Assume that at time instant t- i. :he exact membership set is outer bounded by the ellipsoid

Et-1 described by

Et., = (0 e RN : [0 - 0(t-l)] P-(t-l) [0 - 0(t-l)] _ u-(t-l)) (2.3) i
where N=n+m+l, P-'(t-l) is a positive definite matrix, and 0(t-l) is the center-of the I
ellipsoid. At time instant t, the observation y(t) yields a set St which is a degenerate

ellipsoid in the parameter space, namely I
St = (0 E RN : [y(t) - 0TD(t)]2 < y2 } (2.4)

From (2.1) and (2.2) it is clear that St contains the true parameter vector. An ellipsoid Et

which contains the intersection of Et.I and St is then given by [101

Et= 0 e RN : (1-Xt)[0- 0(t-l) IT P-t(t-1) [0- 0(t-l)]

+ X [y(t) - 0TD(t)]2 } (1-Xt) O2(t-1) + Xt'( 2 1 (2.5)

where X is a positive time-varying updating gain. Note that (1-Xt) can be regarded as a

forgetting factor. The formation of the bounding ellipsoid Et which contains the

intersection of an ellipsoid Et. and the set St is illustrated by means of a two-dimensional

example in Figure 1. By performing some algebraic manipulations on (2.5), an expression

for Et can be obtained as

Et = (0 r RN :10 - 0(t)IT P1(t) [0 - 0(t)] < G2(t) (2.6)

where

P'1(t) = (1- k)P-I(t-l) + X c(t)1T(t) (2.7)
a 2(t) = (1-X ) 02(t-1)+ Xt y2 - Xt (1-+t) [y(t)- T(t)0 D(t 1)(21-X.t+ Xt (DT(t)P(t- 1)(D(t) 28

0(t) = 0(t- 1) + X.t P(t)(D(t)[y(t)-(DT(t)0(t - 1)] (2.9)

Using the matrix inversion lemma in (2.7) yields

P(t) = !-,[P(t- 1) - XtP(t-1 )(D(t)cIT(t)P(t - 1) (2.10)
-t _lXt + ktT(t)P(t- l)$D(t)

Equations (2.6) - (2.9) characterize the update of the bounding ellipsoids. The center

0(t) of the bounding ellipsoid Et can be taken to be a point estimate of the parameter vector.

Note that different values of X-t.ield different bounding ellipsoids [10]. To ensure
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convergence, Xt need be chosen to optimize in some )ense the sounding ellipsoids and.

clearly, different optimization criteria would lead to different OBE algorithms.

In the DHOBE algorithm, the updating gain Xt is chosen to minimize G2 (t) at every

instant t. This has the effect of usually decreasing the size of the ellipsoid from iteration to

iteration, though there is no guarantee that the size will be minim-,.ed. This choice of Xt has

yielded good results experimentally and in addition has simplified the convergence and

tracking analysis of the algorithm. The minimization procedure yields the following

updating criterion (61

If a 2 (t-l) + 82(t) y 2 then X, =0 (i.e., no update) (2.11)

where 8(t) is the a priori prediction error, namely,

8(t) = y(t) - OT(t)0(t - 1) (2.12)

Otherwise if 02(t- 1) + 82 (t) > y2, then the optimum value of Xt is non-zero and can be

calculated according to
.= min(a,vt)

where
a if 82 (t) =0 (2.13.a)

if G(t) = 1 (2.13.b)

Vt = 1 _ GWtl-G(t) G 1"t)

l+P(t)[G(t)-!! if l+P(t)[G(t)-l >0 (2.13.c)

a if l+1(t)[G(t)-I _0 (2.13.d)

and ca is a user chosen upper bound on Xt satisfying

0< a< 1 (2.14)
and

G(t) = (cT(t)P(t- 1) (t) (2.15)
and

,W2_ 0 2(t- 1) (2.16)1( - 52(t)

The initial conditions are chosen to ensure that 0* E E0 . A possible choice is

P(0) = I. 0(t) = 0 and (y2(0) = 1/E2 where e << 1.

The above equations. t2.8-2.16) define the recursions of the DHOBE algorithm. In [61,

some convergence type properties such as conergence of the parameter estimates to a ball

and boundedness of the prediction error have been -hown for time-in, ariant NNstems. In

4
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[Ill and-,121, an extension, of this algorithm was deveioped for ARMA parameter

estimation and'similar convergence properties have been shown to hoid.

III. ANALYSIS OF TRACKING CHARACTERISTICS

As mentioned earlier; tracking in the context of OBE algorithms for parameter

estimation will mean ensuring that the time varying true parameter vector is contained in the

bounding ellipsoid. The theorems below present conditions under which parameter

tracking can be accomplished.

Theorem 1. A sufficient condition for 0*(t) e Et is

(9* (t)- 0(t- 1))"P- (t - l)(0 * (t) - O(t - 1)) a2(t - 1) (3.1)

Proof: If 0*(t) EtI then sinceO*(t)'e St and Et QEt.lnSI, it follows that.6*(t) e Et.

And from (2.3), 0*(t) r Et. is equivalent to (3.1).

Theorem 2. At any time instant t, the true parameter 0*(t) e Et if and only if

(0* (t) - 0(t - l))T P- (t - 1)(0"* (t) - 0(t - 1)) < a2"(t -1) + l_. (y -v2(t)) (3.2)3

where v(t) is the noise term in (2.1).

Proof: Subtracting 0*(t) from both sides of (2.9) yields

0(t)-0 * (t) = 0(t- 1)-0* (t) + XtP(t)(D(t)8(t) (3.3)

Define the following quadratic function in 0*(t)

V(t)= [0(t)-0 * (t)]T P'1(t)[0(t)-0 * (t)j

Using (2.7) and (3.3) it is straightforward though tedious to show that

V(t) = (1 -X )[O(t - 1)- * (t)]T P"1 (t- l)[0(t - 1)-0* (t)]

+ x 1v1 -(t) - (t) (3.4)

Using (2.8) in (3.4) yields
Vwt)-a6zt)= (1-?,.)[( - 1) - 0 *(0)] r P'I(t - 14[0(t - 1) - 0 *(t)]

+X, (v (t) - Y2) -(1-X)a"(t-1) (3.5)

Since 0*(t) r Et if and only if V(t) _< a2(t), thus (3.2) is obtained. VVV

5
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itis easy to se~e from TIheorem :;,a[t 1f :hAe rue paranieter a, rscntn or all t. -.hen

the boundingz ellipsoids obtained jy -.he DROBE .-igorithm encloses i3(T) at all lime

instants. This -is a Property that all wedl devised set-membership estimation algorithms

I should have when applied to estimation of time-invariant parameters. If. on the other hand.

0*(t) is timei-varying, and if at some time instant tk, 0*(t) is found to be out of the bounding

ellipsoid Et. it must not have been included in Et- 1. Theorem 2 then demarcates the region

in which W6(t) can migrate without loss of tracking. This region is shown in Figure 2 for a

two-dimensional case. This theorem also shows that by choosing y2 to be larger than the

actual bound, say, on v~t), it is possible to increase the tracking capability of the

algorithm. The next theorem gives an uipper bound on the maximum variation in the

-parameters for which tracking is guaranteed.

Theorem 3. If 0*(t- 1) r= Et-, and Xt #O, then e*(t) ez E;if

I mit .,[ LP 'tl)1[y
I t)1: J Xmin [P*I(tl) 0 l-2xt)

+(Y 2(t V;[P(t -1)(.6

I wereA(t) = 0*(t) - 0*(t- 1) (3.7)

and Xmin and X.max denote. respectively, minimum and maximum eiizenvalues. and 11.11

denotes the usual Euclidean normn. The quantity y2 is the actual bound on v2(t) and the

threshold y;/2 that is needed for evaluating the optimal updating gain via (2-. 11) Ind (2. 16) is

chosen to be larger than y2.

Proof: It is strai~htforward to show that

I0(t - 1)- 0*(t)IrpFift - fIO(t - l) - *(tI

-V(t - l) - A r t)*4(t~ - A(t) -2Ar(O)P 0 - 1)6(t - 1) 38

where WOt has been defined previously aInd

OOt-H 1) O- 0"(t-l1)

Substituting2 (3 .8) into (3 .5) and usiniz the fact that v2(t 12 yield
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V (I) (3. ( - .V(t-9'-) t-l + .- I
- +~~~~-( '-.MltP" t - !DA(t) - 2Ar(t)P" (t - !DO t - PI] 39

Since 0*(t-,1) Et-i, therefore V(t-i)< G2(t-1) and us a sufficient condition for

0*(t) r Et is
'r(~a(t - )At) - 2Yr (t-)P"-(t - 1)6(t - 1)

< (y 2-) (3.10)I

i.e., 0*(t) t Et if

" _ -%, (3.11)

Since V(t- 1) < 2(t- I), therefore

II(t - 1)112< " (t- 1)(3.12)Amin[1P- (t -I)]

Substituting (3.12) in (3.11) gives a sufficient condition for. O*(t) E Et as
Xm [P' (t- 1)]

)Lma[P* (t - 1)11 A(t)112 +211 A(t)I Vo (t - 1) [na ( - 1)] 
I

_ 2l_-(y )2 (3.13)

Solving this quadratic inequality then yields (3.6). VVV

It can be seen from (3.6) that if Xt = 0. then the difference between y2 and / 2 can not

be exploited to increase the tracking capability of the algorithm. In this case, 0*(t) E Et if

and only if 0*(t) c Et- . Thus if O*(t) jumps out of Et-1 , and no updates are performed at

future time instants t+i, then 0*(t+i) e Et+1 = Et-l, and the parameter may never be

tracked. However, it can be argued that an update will be performed in a finite interval of

time. This is shown heuristically, by examining the expression for the magnitude of the

prediction error

15(t)l = I [O(t)-e(t-I)]TD(t) + v(t) I

Assume that no updates are performed for a large interval of time say, from time instant t to

time instant t + N1. From (2.11) it then follows that I

7



[0"(t+i)-O(t-!L 'r((t ih vt+i < [ -2 _ d-(t l)Il;2  1 .... N.

If the- input and noise sequences are sufficiently rich, then the regressor vector (0(t) will

span.the parameter space in all directions and so [0*(t+i)-0(t-lIT(D(t+i) will not be

I, arbitrarily small for all i e [0, Ni]. If lv(t+i)l is close to its true upper bound ;/ for some i

in the same interval, and if {v(t)} is sufficiently uncorrelated with the input {u(t)), then the

above inequality will be violated and an update will be performed. It is also clear that to

ensure that an update is performed eventually (i.e., violation of the above inequality), the

threshold ,2 should not be chosen much larger than y2.

If the parameter variation is such that (3.2) is violated then 0*(t) i Et. The next

theorem shows that if 6*(t) remains fixed after it jumps out of Et. and if the jump is not

large enough to cause the subsequent ellipsoids Et+1 to vanish, for i _> 0, then the DHOBE

algorithm guarantees that the true parameter will be tracked (enclosed) in finite time.

Theorem 4. Assume that the parameter variation at time instant t causes 0*(t) z Et.

Assume further that:

(1) After this variation, the parameter remains constant (i.e., the jump parameter case).

(2) Cy2(t+i) > 0, for all i _> 0.

(3) The algorithm does not stop updating.

(4) A lower bound p is imposed on X, at all updating instants.

Then there exists an NJ > 0, which depends on the amount of parameter variation and the

actual and user set noise bounds, such that 0"(t) e Et+N1.

Proof: Since 0*(t) e E, , define
rI = 10(t)-9* (t)]P'(t)[0(t) -9* (t)I- (t) > 0 (3.14)

Assumption I1) will imply that A(t+ NJ)= A(t+l) =0 for arbitrary positive NJ.

Substituting in (3.9), and iterating from t+Nt to t+l yields
I °N, -N

Wt+N,)- t+ N:) = rll (1,) - + 1q,['"t- ;/"] (3.15)
=t+ 48
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where qi4t is defined as
= , , (1 , if'i<tI

Assumption (3)-willensure that-some of the Xt ,, i _ 0, will be non-zero. This ensures that

the first term on the right hand side of (3.15) will tend to zero. Since the second term on

the right hand side of (3.15) is negative, the difference V(t+NI)- a2 (t+N 1) will tend to

zero as NI increases. Thus there exists an N1 such that

V(t+N1 ) - &2(t+N1 ) -0 (3.16)
Thereby ensuring that 0*(t) e Et+N1. vvv

IV. A RESCUE PROCEDURE

In many cases when the parameter jump is large, or if the ellipsoid has shrunk to a very

small size, the intersection of Et.i and St can be void. This situation is illustrated in Fig. 3.

In such cases, 0 2 (t) will become negative, thus indicating that a bounding ellipsoid could

not be constructed. To circumvent such a failure of the algorithm, a rescue procedure is

proposed. If at any time instant t, a2(t) becomes negative, then G2(t-I) is increased by an

appropriate amount, thereby increasing the size of Et., so that the intersection of St and this

enlarged E1_1 will no longer be void. As such, an ellipsoid E, will be constructed.

Alternatively, y2 could be increased to permit a non-null intersection. However, the former

procedure is preferable because it causes 0(t) to migrate towards 0*(t), thereby reducing the

parameter estimation error. The rescue procedure is similar to the covariance resetting I
technique used in RLS algorithms to cope with time varying systems. However, in the

RLS case, a jump in the parameters has to be detected by some other means before the I
covariance matrix can be reset whereas for the DHOBE algorithm. a 2(t) becoming negative

is an automatic indicator of a jump. The amount of increase in 2(t- 1) required to make

&(t) positive in such a case is now calculated.

Recall that the optimal updating gain Xt is the one which minimizes a2(t). The

minimum occurs either at a )tationary point of (2(t) or at one of the boundaries Xt = 0 and

9
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a~ c. Since. it is assumned that a faiiLire occurs wrnen G It-1 > 0 a)~nd (Y'f < 0. therefore

an update Ilas to occur attr and so kL 0 The case mnat the minimumn occurs at a stationary

~ *point which is strictly inside the interval [0,ca and the case that the m1inimumn occurs at Xt=

I c4 are considered. separatdlv.

Case 1. c 2 (O =0 and 0 <v < (xI ~ ~dX .*v

From (2:-13) it is clear that this case occurs if and only if I+ 1(t)[G(t)-lI > 0 and v, < ot.

Setting the derivative of G2(t) in (2.8) to zero yields

G2t + k+0(t) 52( I(I .+ XG(t)Y-8(t

* Substituting a2(t- 1) from above into (2.8) yields

I (I1- X1 + %tG(t))

3 Thus a2(t) is negative if and only if

I8(t)I> I- Xt + kG(t) (4.2)

1 On substituting for Xt from (2.13b) and (2.13c), (4.2) can be expressed, respectively, as

18( t)I> ___ (t) -I i ~):=

and 2y(4.3)

I It)I -(if 0(t) =I

[I Using the definition of P3(t) from (2.16) in (4.3) and manipulating terms yields a necessary

[ and sufficient condition for aF2 (t) to be negative in terms of ay2(t- 1)

1____ [8'/t10+12G(t) - 11+1I8(t)III &(t-1) < 0(t)-I - G K. if 0(t) I

Note that the last inequality was obtained because vt = (I-3(t)2 < 1. hence 1+ P(t) > 0.

LThus if the calculated value of &;(t) is negative, the rescue procedure wvill replace ay2(t- 1)

~ 3by Kt-t- where is a positive constant. thereby increasing the size of E,. ,. The optimum
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updating gain will then be recaiculatea and the resulting %alue ',.il be used to calculate

(y2(t), 0(t) and P(t). Our simulation studies have shown that usin, a xalue of = I yields

satisfactory results.

Case, 2. ,

In this case, from (2.8),.2(t) is negative if and only if

82(t) _ [1 .+oG(t)] -Lt-1) -

Thus 02 (t) is negative if and only if
2c r(t-l} < Q •K,

.I - a + G(t) I- a

In this case 0 2(t-1) would be replaced by K2 + and the value of the updating gain would

be recalculated and used to calculate a2(t), 0(t) and P(t).

i
V. SIMULATION EXAMPLES

The tracking properties of the DHOBE algorithm are studied for an ARX(1,1) model I
y(t) = ay(t-1)+ bu(t) + v(t)

The nominal values for the parameters were a = -0.5 and b = 1.0. The noise

.equence(v(t)) and the input sequencetu(t)) were both generated by a pseudo-random

number generator with a uniform distribution in [-1,11. This corresponds to a signal-to-

noise ratio (SNR) of 0 dB. For the DHOBE algorithm, we chose ox = 0.2, 72 = 1.0, and

CHOt)= 100. In all the examples shown here, the parameter estimates are taken to be the II
centers of the optimal bounding ellipsoids. The parameters were varied as follows:

Case 1. Slow variation in the parameter vector

The parameters a and b were varied by 1% for every 10 samples, starting from the first

,,ample. and the output data I{tt) I were generated for r = 1.2.... 1000. It was then observed

that the bounding ellipsoids created by the DHOBE algorithm contain the tre parameter at

all time instants. The final parameter estimation error was 7.0x10 "3. The parameter I
estimates, i.e.. the centers of the OBE. are plotted against the true parameters in Fig. 4.
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Ffomthe figure it is clear tnat the DHOBE aigoritnm tracks qIuite well .,low time variations

in the parameters.

Case 2. Slow variation in the parameter vector from t = 500

The parameters a and b were varied by 1% for every 10 samples. starting from the

500th sample. The final parameter estimation error was 3.0x10 -3. All the bounding

ellipsoids were seen to contain the true parameter. The parameter estimates are plotted

against the true parameters in Fig. 5. The figure shows that the algorithm can track slow

time variations in the parameters even after it has "converged".

Case 3. Jump in the MA parameter at t = 50)

The parameter b was changed by 100% at the 500t sample, and a was kept constant at

its nominal value at all times. Several runs of the DHOBE algorithm were performed with

different input and noise sequences. It was observed that the true parameter vector was out

of the bounding ellipsoid at t=500 and would be recaptured by the bounding ellipsoid after

some number of samples (usually less than 50 ) thus verifying the claims made in Theorem

4. It was also observed that the jump causes the resulting bounding ellipsoids to have

smaller sizes. Intuitively, a jump at time t causes the set Si, i> t , to have a smaller

intersection with E,.1 and so the ellipsoid which bounds the intersection is also smaller. In

one particular run, the parameter was recaptured at t = 530 and the final parameter

estimation error at t = 1000 was 1.3x 10- 4 . The parameter estimates (the centers of the

bounding ellipsoids) are plotted against the true parameters in Fig. 6. Figure 7 shows the

parameter estimates obtained for this run by applying the RLS algorithm with a forgetting

factor X(t)= 0.9 and Xdt) = 0.99. Obse-ve that the RLS parameter estimates are extremely

jumpy when Xtt) = 0.9. probably because the forgetting factor is not large enough to

average out the noise. Figure 8 shows the estimates wiien the variable forgetting factor

proposed by Fortescue and Kershenbaum 1131 is incorporated into the RLS algorithm.

This variable forgetting factor, X(t), is a function of the prediction error and is given by
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+-(t)
ki)= i-ce

A value of a= 0.01 was used because it yields steady state tracking error of about the

same-magnitudeasdoes the DHOBE algorithm. From these figures. it is evident that the

DHOBE algorithm can track jumps in the parameters at least as well as the exponentially

weighted RLS algorithm.

The'effect of varying y2 was also studied. A value of y2 = 2 was taken. In this case,

the true parameter did not jump out of the bounding ellipsoid at t = 500. The parameter

estimates are identical to those in Fig. 6. But the ellipsoids are larger, as expected.

For a different run, i.e., with a different input and noise sequence, the jump at t =500,

caused G2(t) to become negative. The rescue procedure was then used and yielded

remarkable results. The true parameter was captured immediately at t = 501. The final

parameter estimation error was 2.4x 10-4. Figure 9 shows that the parameters are tracked

extremely rapidly in this case.

Tracking Performance in Gaussian Noise

It is well known that least-squares algorithms are optimal in the constant parameter case

for Gaussian distributed noise. It is thus interesting to compare the tracking abilities of the

DHOBE and RLS algorithms in Gaussian noise. The same ARX model was used with the

noise sequence v(t) now being generated as zero-mean white Gaussian noise with variance

0.25, which corresponds to an SNR of 1.25dB. To satisfy the bounded noise assumption,

v(t) was truncated to the range [-1,1], resulting in a slightly larger SNR. The parameter b

was changed by 100% at the 500th sample, and a was kept constant at its nominal value at

all times. Several runs of the DHOBE algorithm were performed with different noise

sequences. As in the uniform noise case. it was found that in a few runs, the rescue I
procedure was activated, consequently causing extremely rapid acquisition of the

parameter. In most of the runs, the true parameter was acquired by the bc,,uding ellipsoid I
i,,thout requiring rescue. The acquisition usually happened in les. than twenty samples

13
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after the chanze occurred. ,-izure J) compares the tracking. performance of the RLS

ri 5-algorithm:(with Xtt) = 0.9 and /tJ = 0.99) to the DHOBE algonthm for a nin in which the
F irescue procedure was not activated. The curves shown are plots of estimates of parameter

I b byboth algorithms. It is seen that RLS with ktt) = 0.9 seems to track a little faster than

:3the DHOBE algorithm. However the steady state RLS estimates are extremely jerky. The

tracking performance of RLS with kXt) = 0.99 is definitely inferior to that of the DHOBE

[.1 algorithm, however its steady state performance prior to the jump is superior. Another

point of note is that the DHOBE estimates become much less jerky after the jump on

I account of the decrease in the size of the ellipsoids.

3 VI. CONCLUSION

The tracking properties of a recursive set-membership parameter estimation algorithm

viz. the DHOBE algorithm have been investigated. Some sufficient and other necessary

conditions which ensure parameter tracking have been derived. A modification of the

DHOBE algorithm is proposed to improve its tracking capability for larger parameter

variations, Simulation results show that the tracking performance of the DHOBE algorithm

is comparable to that of the exponentially weighted RLS algorithm. In some cases of large

parameter jumps, the automatic activation of a rescue procedure causes the parameters to be

3 Itracked extremely rapidly.

I
I
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CHAPTER 1

INTRODUCTION

1.1 Formulation of the Adaptive Filtering Problem

An adaptive filter is one which can adjust its impulse response through time in order

to rea-Fsome desired level of performance. The means of adjusting the adaptive filter is

accomplished through an adaptive algorithm. This type of filtering is especially needed

when dealing with unknown and/or changing environments. Many useful applications

have been found for the adaptive filter, such as noise cancellation, echo cancellation in

phone lines, equalization of a communication channel to combat intersymbol interference,

and system identification. Detailed descriptions of these and other applications of adaptive

filters can be found in [Ha86], [Wi75], [Ho84], and (Qu85].

The adaptive filtering problem will be approached here in the context of system

identification. This is an important area of study for adaptive systems, since many

applications of adaptive filters can be put in this context. In system identification, it is

desired to characterize a system, usuailly called the plant (see Figure 1.1), with an adaptive

filter, based only on the observable input/output data sequences, x(n) and y(n) (see Figure

1.2). The plant/adaptive filter combination will be referred to as the adaptive system.
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3

1.2 Notations

The systems of interest in this presentation for the plant and adaptive filter are those

which can be represented by linear constant-coefficient difference equations. In the

literature, there are three popular notations which are used to express this difference

equation input/output relationship. The one that is used depends largely on ease of

explanation and the type of results that are needed. However, the varying notations can

also be a source of confusion. It is attempted here to explain these three notations in order

to avoid future misunderstanding of their meaning. The following notational examples

describe a system with input x(n) yielding an output y(n):

1) Difference- equation notation.

This is the standard notation found in most texts dealing with digital signal

processing [Op75,Ch.1]:

i, nb
y(n) = -Faiy(n-i) + Xbix(n-i) (1.1)

i= iz0

The minus sign here is arbitrarily chosen to be consistent with the operator notation, shown

next.

2) Operator notation.

The operator q-i, is chosen to represent a delay in its operand signal of i samples,

i.e., q-ix(n)=x(n-i). This is analogous to the z-transform representation of a delayed

signal. It is now possible to represent (1.1) in operator notation by defining the following

polynomials:
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x~)Plant ........ )

Figure 1.1 Theplant

y(n)

X( daptive Filter

Figure 1.2 The adaptive filter

Referring to Figure 1.1 and Figure 1.2, it is seen that two structures must be

decided upon in the system identification problem, yielding a two-step modelling p.ncess:

1) The model of the plant structure. This decision is based on some

knowledge of how the output signal, y(n), is generated from the input

signal, x(n).

2) The adaptive filter structure. Thio decision is based on practical restrictionsi on the complexity of the adaptive filter and/or its corresponding adaptive

a] gorithm.

In Chapter 2, an assumption which is common in the field of system identification

will be made on the plant structure and two popular choices for the adaptive filter will be

investigated. These two structures of adaptive systems are seen in Chapter 3 to yield two

families of adaptive algorithms.
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A(q -7) = i + alq-1 + a2q 2 +-. + anaq-a

B(q -I ) = b0 + blq-1 + biq- 2 + ... + bnb-nb

An equivalent expression to (1.1) is thus:

A(q-l)y(n) = B(q-l)x(n)

Note y(n) can be solved for, thus yielding:

_i'-B(q-1) (1.2
y(n) (q7) x(n) (1.2)

It is important to note here that the operator polynomial appearing as a denominator term in

(1.2) implies the existence of an autoregressive component in the determination of the

signal y(n). In other words, y(n) depends on past values ("regressive") of itself ("auto") in

addition to the current and past values of the input.

It may appear as if there is a mixing of frequency domain and time domain notations

in (1.2). However, this is not the case, since the delay operator was not defined as a

complex transform variable as in z-transforms. In interpreting (1.2), it is helpful at first to

mentally multiply the expression through by the denominator polynomial, A(q-1). Since

A(q -1) begins with a "1." the first term is y(n) and all the other terms are autoregressive,

and can be moved to the right of the equation, yielding the explicit expression for y(n) of

(0.1).

An example of operator notation which will be seen often is a pure autoregressive

filtering of a signal. This operation, applied to a signal y(n), appears in operator notation

as:

y'(n) - A(q') y(n)
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where the prime (') character is used here to denote the autoregressively filtered version of

the unprimed signal. Expanding this notation as described in the previous paragraph yields

-the explicit difference equation relationship:

A(q-1)y'(n) = y(n)

na

y'(n) = y(n) - Xaiy'(n-i)
i=1

3) Matrix notation.

-Another convenient means of expressing (1.1) is through matrix operations. Define

the parameter vector, 0, as:

0=[a, a2.. an, b0 bl... bnb]T

Also define the regressor vector, (p(n), as:

(p(n) = [-y(n-1) -y(n-2) - y(n-na) x(n) x(n-1) ... x(n-nb)] T

These definitions lead to the following equivalent expression for (1.1):

y(n) = OTqp(n)

1.3 Difference Equation Structures

There are five difference equation structures that are the most commonly

encountered and dealt with in the literature. In the following, they are presented in terms of

the plant structure of Figure 1.1. Note that an unobservable, zero mean white noise

component, v(n), is present in all the cases, since an approximation is generally acceptable

if it is correct up to some random, independent, zero mean amount. The corresponding
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adaptive filter structures are obtained by adding a caret C) on top of the plant quantities

y(n), ai, bi, ci , na , n, , and providing an estimate of the terms involving the

unobservable signal, v(n). When v(n) appears alone as an additive modelling error of the

plant, its estimate is the expected value, which is zero. In other words, the v(n) term is

simply dropped in these cases (which are shown as structures 1) - 3) below). The five

structures, in order of increasing complexity, shown in both difference equation and

operator notation, are:

1) Exogenous (X)

nb

y(n) = Xbix(n-i) + v(n)
i=O

y(n) = B(q-1)x(n) + v(n)

2) Autoregressive (AR)

nay(n) = -Xaiy(n-i) + v(n)

i=1

A(q-l)y(n) = v(n)

3) Autoregressive, exogenous input (ARX)

na nb

y(n) = -Xaiy(n-i) + Vbix(n-i) + v(n)
i=1 i=O

A(q-)y(n) = B(q-l)x(n) + v(n)

4) Autoregressive, moving average (ARMA)

na ne

y(n) = -laiy(n-i) + Iciv(n-i)
i=1 i=0

The caret used in this manner denotes a quantity which is an estimate, in some sense, of the
corresponding "uncareted" quantity.
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At I-)y(n) = C(q -l )v(n)

5) Autoregressive, moving average, exogenous input (ARMAX)

na nb n
y(n) = _Xaiy(n-i) + Xbix(n-i)+ Xciv(n-i)

i=1 i=O i=O

A(q-1)y(n) = B(q-1)x(n) + C(q-l)v(n)

The ARMAX model is the most general model which will be considered here, as it

contains all previously mentioned models 1) - 4) as special cases. Examples of other more

general approaches to modelling are given in [Lj83] and [Ab88]. Specifically, the Box-

Jenkins model is discussed in [Lj83], which extends the ARMAX model by replacing the

A(q71), B(q-1), and C(q-1) polynomials with rational functions of polynomials. In

[Ab88], the plant is modelled as a linear, continuous-time, time-varying process with no

constraints on the order of the system. It is shown there how this very general model

yields a nonlinear adaptive filter.

The extent to which a given plant can be identified with an adaptive filter will

depend of course on how well the chosen plant structure approximates the true physical

system, and also on which structure is chosen for the adaptive filter, as will be seen in

Chapter 2. This two-step modelling process is crucial to the success of any adaptive

filtering problem.

1.4 Applications of Difference Equation Structures

It is helpful to see how the difference equation structures presented above are

utilized by considering two examples of their use in practical situations: Linear predictive

coding and echo cancellation.

78



KI
I

1.4.1 Linear Predictive Coding (LPC) Speech Modelling

An important modelling example in adaptive filtering is the characterization of the

vocal process for the reproduction of speech. The LPC technique for speech modelling is a

"black box" method, which assumes a known input of either an impulse train (for voiced

sounds) or white noise (for unvoiced sounds) applied to an unknown time-varying system

whose output is the final voice signal (See Figure 1.3). The unknown system corresponds

to the "plant" in Figure 1.1 and the two-step modelling process of Section 1.1 must be

applied in order to characterize this speech-producing system with an adaptive filter. When

this is accomplished, speech sounds can be reproduced by exciting a system with the

appropriate input signal having the same characteristics as the vocal tract plant. Since these

characteristics are time-varying, the adaptive filter is especially suited to this application.

Impulse
Train Voiced

1~) y(n)

Unvoiced I
White Vocal-Tract
Noise Plant

Figure 1.3 A model of speech production

Following the two-step modelling process, it has been seen experimentally that an

AR model for the vocal tract is a good choice for the plant structure of the adaptive system

(See Figure 1.3). As for the adaptive filter structure, note that the input is not accessible to

the adaptive filter. However, the input is assumed to be either white noise or an impulse

train. Therefore, if an adaptive filter could reproduce the input given only the output voice

signal, it would characterize the inverse of the vocal tract plant, and thus characterize the

vocal tract itself. It can be seen that an adaptive filter with an X structure having input y(n)
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and output e(n) (See Figure 1.4) can accomplish this inversion when the adaptive filter

coefficients are adjusted such that bi=a i, i=0, .., fib=ha (ao=l). It is shown in [Ha86]L^
that choosing bi parameters such that the mean-square value of the adaptive filter output,

e(n), is minimized will yield parameters such that bi=ai.

Adaptive Filter

l~n Figure 1.4 X structure for adaptive filter

i 1.4.2-Echo Cancellation

I In telephone communication, a problem arises when the signal, x(n), which is

transmitted over long distances via a "four-wire" line, reaches the "two-wire" line of the

destination phone. An echo, y(n), is generated at the meeting of the two transmission lines

(the hybrid), due to an impedance mismatch. This echo subsequently travels back to the

source, which the speaker hears (see Figure 1.5).

Four-wire line x(n)

Two-wire lineHybrid 1.

144 Four-wire line
y(n)

Figure 1.5 Echo generation in phone lines

If the hybrid characteristics were known, a fixed filter could be placed in parallel

with the hybrid. The filter output would then be subtracted from the hybrid output, y(n),
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thus cancelling the echo. Since the hybrid characteristics are not known and may be time

varying as well, a fixed filter will not solve the problem. However, an adaptive filter in

this configuration producing an output, y(n), has been shown to accomplish very well the

task of echo cancellation when the adaptive filter coefficients are adjusted such that the

mean-square value of the error signal, y(n--y(n), is minimized. This is illustrated in Figure

1.6, where H(q - 1) and fI(q-1) stand for rational functions of the operator polynomials

introduced in Section 1.2, analogous to the transfer function representation for linear, time-

invariant systems.

x(n)

SH(q--)

I 
v(n)

Figure 1.6 Model of hybrid and echo cancellor

At this point, again, models must be decided upon for both the hybrid "plant" and

the adaptive filter, through specific choices for H(q- 1) and fIt(q-1). The hybrid has been

modelled in different ways, giving rise to various adaptive filter structures. The simplest

model of the hybrid is to consider it as an X process [Ha86], [Ho84]. In other words, y(n)

depends only on a weighted sum of past inputs. Since the input is available for use by the

adaptive filter, the X structure should be adapted so that bi= b i, i=O, . .. , b= nb, and thus

the error signal will be only white noise. This plant/adaptive filter combination

coresponds to the choices:
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where B(q-1) and B(q-1) are defined as in Section 1.2.

A slightly more complicated structure for the hybrid models it as an ARX process,

which computes its output as a weighted sum of both the incoming signal, x(n- i), i--O,

nb, as well as its output y(n-i), i=1, ... ,na. This is a more realistic system, as this

recursive structure contains poles as well as zeros. Note that the adaptive filter in this case

can still be chosen with an X structure, because both signals x(n) and y(n) are available to

use as inputs. When the adaptive filter weights which multiply x(n-i), i=0, ... ,fib, are

equal to the corresponding bi, and those which multiply y(n-i), i=1, -. ,fia, are equal to

aj, the error signal will again be white noise.

Finally, a model [Fa88] which is more realistic and which will be considered in

some detail later, is to represent the hybrid as being an ARX process with no internal noise

term as in the ARX process above, but whose output, p(n), is corrupted by white

measurement noise, v(n). It will be shown in Chapter 2 that this model of the hybrid is

actually an ARMAX process with ci=a i, i=l, .. , na It will be further be shown that the

proper structure for the adaptive filter to cancel the echo is the ARX structure. In other

words the adaptive filter must be recursive (IIR) hi order to cancel the echo, y(n), produced

at the hybrid. Referring again to Figure 1.6, this plant and adaptive filter are characterized

by:

H(q-1) _ (q- 1)B (q- 1)

A(q-1)
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Note that if v(n)-O, the situation reduces to the ARX plant described in the preceding

paragraph. Thus the simpler X structure adaptive filter with inputs x(n) and y(n)=p(n) can

be used. The system structure for this situation is slightly different than the one shown in

Figure 1.6, and is shown in Figure 1.7. In this case two FIR filters are used - one which

realizes the zeros, and one which realizes the poles of H(q-1). It is important to see here

how, when A(q-1) = A(q-l) and t(q-) = B(q-1), the signal e(n) is zero.

x(n)

t ( q - l )  B(q-1)

A(q-l)

y(n)

. e~)A(q-9)

Figure 1.7 Echo cancellation for a recursive plant when v(n)-

1.5 The Mean Square Error Criterion

In order for an adaptive algorithm to adjust the impulse response of its adaptive

filter, the algorithm must somehow be able to gauge its progress to determine how to make

the adjustment. A natural criterion on which to base this adjustment is the difference

between the output of the plant, y(n), and that of the adaptive filter, y(n). Thus the error

signal is defined as e(n)=y(n)-y(n)t. Intuitively, the magnitude of the error signal should

The notation e(n) will be used to refer to the error signal of any adaptive system. In Chapter 3, error
quantities for specific adaptive systems will be defined as ee(n) and oe(n). The cause of the difference
between ee(n) and oe(n) will be seen to be the m. ier in which the adaptive filter output, y(n), is generated. 83
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be as small as possible for desired operation. Mathematically, however, the criterion

ly(n)-Y(n)l isn't very attractive. A mathematically sounder criterion leading to efficient

adaptive algorithms is the mean- square error (MSE) which is expressed as E { e2(n) }.

The squaring operation provides an alternative to the absolute value operation. Statistical

expectation is needed because, as noted previously, the plant models are all assumed to be

accurate to within an independent, zero-mean noise term, v(n).

The squaring operation can also be viewed as providing a criterion which tends to

emphasize larger values of the error signal while diminishing the importance of smaller

errors, as opposed to the absolute value operation, which linearly assigns an error penalty

according to the magnitude of the error, le(n)l. This is an intuitively reasonable

characteristic for a criterion of "goodness" to have. However, this also causes some

algorithms to adapt more slowly as the MSE of the adaptive filter decreases. Depending on

the goal of the adaptive system, this may or may not be of significance.

1.6 Overview

In what follows in this thesis, some basics in the area of adaptive systems from the

perspective of system identification will be developed, as well as experimental results

obtained by the author. In particular, Chapter 2 introduces two important classes of system

identification models: The equation error and output error adaptive systems. Chapter 3

presents methods of adjusting an adaptive filter (i.e. adaptive algorithms) in the context of

both the equation error and output error adaptive systems. This will be seen to give rise to

two different families of adaptive algorithms. In Chapter 4, an adaptive algorithm is

presented which combines elements from two adaptive schemes studied in Chapter 3.

Simulation results are given which show empirically that the algorithm works, and

comparisons are made with the standard method. Finally, two output error algorithms
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develuped by the author are presented for review. These are preliminary results and no

simulations have been performed yet.
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CHAPTER 2

CONCEPTS OF ADAPTIVE FILTERING

2.1 Modelling Techniques

In system identification the plant structure is usually modelled as a rational transfer

function whose output, p(n), is corrupted by additive white measurement noise, v(n), to

p yield the observable signal, y(n) (see Figure 2.1). This plant is a special case of the

ARMAX structure, which can be seen by taking the expression for the output:

y(n) = BI-:) (n) + v(n)A(q~l)xt

and multiplying through by the A(q - l) polynomial to yield:

A(q-)y(n) = B(q- )x(n) + A(q-)v(n)

Or, equivalently, using difference equation notation:

n n n
y(n) = -laiy(n-i) + Zbix(n-i)+ laiv(n-i) (2.1)

i= i=O i=O

Note in the last summation above, a0=l. It is thus seen that the plant structure of Figure

2.1 is a special case of the ARMAX structure with C(q-')=A(q-1).

15
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Figure 2.1 An ARMAX plant with C(q - 1) = A(q- )

Given this plant, there are two approaches that can be taken in modelling this plant

with an adaptive filter - the equation error approach and the output error approach.

2.1.1 Equation Error Model

Since x(n) and y(n) are both measurable, the simplest approach is to use these

signals to form the output of the adaptive filter similar to how the plant forms the output in

(2.1). This approach yields the expression for the adaptive filter output:

y(n) = -Z7i(n-1)y(n-i) + L:bi(n-I)x(n-i) (2.2)

i=l i=O

Since the v(n) terms of the plant can not be measured, they will be neglected. Note that the

last available values of the adaptive filter parameter estimates, ai(n-1) ana bi(n-1), are used

to determine the adaptive filter output. An adaptive algorithm uses the error signal, y(n)-

y(n), to determine the new "current" estimates, ai(n) and 6i(n).

The expression (2.2) can be expressed in matrix notation as:

y(n) = 0(n-l)T(e)(n) (2.3)

where the regressor vector, qee(n), is defined as follows:

(pee(n) = [-y(n-1) -y(n-!na) x(n) ... x(nTnb) ]

Using operator notation, the description of the adaptive system is:
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y(n)= [1-A(q-1)]y(n) + B(cj-1)x(n) + A(q-)v(n) (2.4)

y(n) = [1-,(q-1,n-l)]y(n) + (q-1,n-1)x(n) (2.5)

The appropriate structures of the equation error model,resulting from the two-step

modelling process described in Chapter 1, can be recognized from (2.1) and (2.2) for the

plant and adaptive filter as ARMAX and X, respectively.

This adaptive system generates an error signal y(n) - y(n) known as the equation

error, ee(n). Subtracting (2.5) froi (2.4) yields:

ee(n)= y(n) - y(n)

S-[A(q - 1) - , ( q - l-)]y(n) +

[B(q-4)-B^(q-,n-1)]x(n) + A(q- l )v(n) (2.6)

Re-expressing (2.6) utilizing matrix notation yields the following useful relationship

between ee(n) and the parameter-error vector, =0,(n-1):

ee(n) = (n-l)Tpee(n) + A(q-l)v(n) (2.7)

An alternative expression for ee(n) can be obtained fiom (2.6) by noting from (2.1) that

-A(q-1)y(n)+B(q-l)x(n)+A(q-1)v(n)--O. This yields the following expression for the

equation error:

ee(n) = A(q-l,n-l)y(n) - 1(q-4,n-l)x(n) (2.8)

Equation (2.8) implies the series-parallel structure of Figure 2.2 for the equation error

model of an adaptive system. Note that :"is structure requires only FIR filters for its

implementation.
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~v(n)

E ee (n)

Figue 2.2 Series-parallel structure of the equtioerr adaptive system

2.1.2 Output Error Model

The output error model adaptive filter attempts to duplicate the structure of the

assumed, plant model. This adaptive system can most easily be introduced through a

diagramof its structure, shown in Figure 2.3.

voen)

[ I I

-- , A(q-l,n-1)'

Figure 2.3 Parallel structure of the output error adapive system

i - 89
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A. few c omzxents ,are in order here regarding, this alternative system identification

structure. Note the parallel structure of the output error model, in contrast to the series-

parallel equation error model structure. This implies that the adaptive filteris independent

of the plant, sharing only the common input signal. An important consequence of this

characteristic is that the noise, v(n), is not introduced in the adaptive filter, as it is in the

equation error model through y(n)=p(n)+v(n) (see Figure 2.2). Thus it might be

reasonable to expect that the measurement noise, v(n), will have less of an effect on the

performance of the. output error model than the equation error model. This is in fact true,

as will be shown sortly. It is also important to note that the adaptive filter in the output

errormodel is an [.R filter, In other words, the autoregressive portion of the adaptive filter

uses past values of y(n-i), i=l,'. ,fin in determining its current output y(n). This is in

contrast to the equation error model, which uses past values of the plant cutput, y(n-i),

i=, f., fa in determining y(n). The output of the adaptive filter can be expressed

compactly in matrix notation similar to that of (2.3) for the equation error adaptive filter:

I (nk) =(-)~on

II where

(P(n) [-(n-1) -y(n-2) -.. Y(n-fia) x(n) x(n-1) .. , x(n-fib)] T (2.9)

The difference of the regressors in (2.3) and (2.9) captures very concisely the fundamental

difference between the equation error and the output error methods.

Referring to Figure 2.3, the output error adaptive system is seen to be described by

the following equations:

A(q-)y(n) = B (q')x(n) + A(q-l)v(n) (2.10)

A(q- ,n-1_)(n) = B(q- ,n-I)x(n) (2.11)



20

The tWo- step' hiod~dlng process described in Chapter I. has thus yielded the structures of

ARIMAX and ARX forttbe plant and a&~iotive filt&. respectively.

knw The epsoututh error'soe, (n).Sbratn(n), can now be derived. This signal is

knw-sthe expusont h error Sbing 11 from (2.10).yields:

= q1) (71nl)xn + A(q-l)v(n) (2.12)

'In order to get an expression for the output errpr, oe(n) =y(n)-Y^(n), either A q-1)y(n) or

A(q-1,n-1)y(n) can be added and then subtracted to the left side of (2.12). This results in

two different interpretations of oe(n). Choosing A(q-4,n-l'y(n),,yields:

A(q-')y(nY- A (ir,n-l)(n) +,&(q-l,n-..)y(n) - A(q-1,a-"1)y(n)

=[B(q71)-t(q-1 ,n-1I)]x(n) + A(q-l)vtn)

Factoring oe(n) =y(n) - y'(n) gives:

A(q-1 ,n-1 )oe(n) + [A(q-l1 A )..~(q-l,n-1 )]y(n)

=[B(q-1)-A(q-l,n-1)]x(n) + A'q4l)v(n)

Solving for oe(n):

The term in braces can be recognized as the equation error, ee(n). Thus

oe(n)=( 2 ) -e(n) (2.13)
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,:ris of interest to examine Equation (2.13). A relation is now apparent between the two

adaptive,system models. Namely, given the same input and noise sequence to both the

equati6n ,error and"output error models, the resulting error sequences are related through a

filtering by the adaptive, filter's denominator polynomial, A(q-l,n-1). This relationship

-will be'exploited later in the development of an adaptive algorithm

Choosing the term A(q-1)y(n) to add and subtract in (2.12) yields a relationship,

analogous to the, equation error expression (2.7), between oe(n) and the parameter error

I vector, o(n-l) =' )(n-1) -p [Jo84]:

A(q-1)y(n) - A(q-l,n-l) (n) +,A(q-l)^(n) - A(q-1),(n)-

I'Tg [(q-1)-1A(q-1'n-1) ]x(n) + A(q-1)v(n)

Similarly factoring and simplifying yields:

I A(q-1)oe(n) + [A(q-1)-A(q-l,n-l)]y(n)

- [B(q-l)-t(q-,n-l)]x(n) + A(q-,)v(n)

oe(n) = A(q-){ -[A(q-)-A(q-l,n-1 )] y(n)

+ [B(q~l)-b(q-1,n-l)]x(n) I + v(n)

oe(n) = - 1 --jff(n-l)yOe(n) + v(n) (2.14)

3 Expressions (2.14) and (2.7) make very clear the effect of the noise, v(n), in each

of the adaptive system models. In the output error model, assuming v(n) is white, the

noise power is simply Crv from (2.14). However, examination of (2.7) shows the noise2 2 2

power of the equation error model to be ( 2+a ... +aa )or-. Thus it is seen that the

measurement noise affects the output error model much less than it affects the equation
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efror model. thdJmplicati6ns of these additional effects-of the. noise in the equation error

modes are discussed in section 2.3.1, in particular with respect to the quality of the

parameter estimates, 6. It will be. shown that the presence of the measurement noise, v(n),

producesa bias.in-the equation error estimates, 6, with respect to the plant parameters, 0

2.2 The Mean Square Error Surface

As discussed in Chapter 1, both the criterion of performance and the adjustment

mechanism depend on the nature of the error signal, y(n)-y(n). Therefore it is important to

examine the characteristics of this-signal for the output error and equation-error models. In

particular, the mean square error (MSE) surface will be discussed for both models. The

MSE surface is the relationship between the MSE and the adaptive filter coefficients. Later,

in Section 2.3.2, these characteristics will be examined as to how they affect the ability of

an adaptive filter to reach an "optimal" state.

2.2.1 Equation Error Surface

In the equation error derivations which follow here and in Section 2.3.1, the

parameter estimate vector, 0, will be considered to be a constant quantity with respect to the

statistics of the input process, x(n). This assumption is obviously not true, since, as will

be seen in Chapter 3, the parameters are updated by algorithms which use the input, among

other things, to accomplish the updating process. The following results effectively evaluate

characteristics of an adaptive filter whose impulse response, h(i)=6i, is set to some

arbitrary constant value. Consideration of the adaptive filter in this way permits the use of

techniques from Wiener filtering theory [Ha86, Ch.3]. This provides a means to evaluate

the perfermance of an adaptive filter and establishes a useful basis for comparison of an
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', ; adaptive filter to the ideal, time-invariant situation. This is especially valid under the

reasonable, commonassumptibn of a slowly time-varying adaptive filter.

In deriving the expression for the MSE surface, it is helpful to use matrix notation.

Recall equation (2.8), reprinted here in matrix form as well:

Iee(n) (q-l)y(n) - A (q-l)x(n)= y(n)- T(p(n) (2.15)

Im Note here that ee(n) is linear in the parameters. Thus ee2(n) is quadratic in the parameters,

yielding a parabolic MSEsurface, and is shown in the-following. Squaring, expanding,

lI and taking expectations of (2.15) yields:

E[ee2(n)] = E[y2(n)] - 2E[y(n)0Tqp(n)] + bTE[C(n)p T(n)]0

Defining R(n)= E[p(n)pT(n)], 0 (n)= E[y2(n)], and rearranging yields:

E[ee2(n)] = &(n) - 26TE[y(n)p(n)] + bTR(n)6 (2.16)1 y
For stationary processes, The expectation operation yields values independent of n. Thus

(n)=a and R(n)=R are a constant value and matrix, respectively, and the equation error

model possesses an error surface which is quadratic in the parameterst . This is a very

desirable property because many adaptive schemes require the MSE surface to have no

local minimum points for guaranteed convergence.

Another useful expression for the MSEE can also be derived using (2.7), reprinted

Ihere for convenience:

ee(n) = bT(p(n) + A(q-l)v(n)

Squaring and taking expectations yields:

The notauon for the MSE surface of E[e2(n)] is mathematically misleading because there is no

indication of the dependence of this function on 0. However, this is the standard notation in the literature
and the dependence on 0 must be tacitly assumed.
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E~ee2(n)] -Tgb + 2bTEt [x(q-I)v(n)]qee(n)}" + (1+a--a+ - +;.)

The second term can be simplified by first expanding the operator polynomial, A(q7.):i

-y(n-2)I

E({[A(q7'1)v(n)](pe(n)j I aiv(n-i) x(n)I

Lx(n-nb) I
Noting that v(n) is white And y(n)=p(n)+v(n) from Figure 2.1, it can be seen that the

~summatibn'willexpanctas:

-V0~ 0I

-a + +a. 0 + +a

a,

0 f (2.17)

Lb
Defining the vector a as the (fia+fib+).dimensional vector in (2.17)j, i.e. as the plant

parameter vector OPwith the bi parameters set equal to zero, gives the desired expression

for this term:

E[A(q'l)v(n)pe(n)] = I-v-
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Thus an alternative expression for the equation error, ee(n), is:

E[ee2(n)]= GTRa a 2T+ a ) -(2.18)

2.2.2 Output Error Surface

To find the expression for the MSE of the output error model, recall equation

(2.13); again neglecting the time dependence of the coefficients:

1:oe(n) 1ee(n)A(q- 1)

Expanding the operator notation yields:
Aia

From this expression it is evident that oe(n) must be a highly nonlinear function of the &i

parameters, since it is the solution to a difference equation. The procedure for finding the

explicit expression for E[oe2(n)] in terms of the parameters ai and bi is given in

P1  [Wi85,Ch.7].

The highly nonlinear nature of the MSE surface in the output error model suggests

possible local minima in this surface. Indeed, it is this characteristic of the output error

model that causes most algorithms to fail. The problem of local minima, together with the

inherent stability restrictions of using an IIR adaptive filter, have severely limited output

Ierror modelling in practical situations. These issues are examined more closely in the

following section.
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2.3 Equation Error-and-Output Error: A Comparison

In any practical situation, an appropriate model for the given problem must be

chosen. Therefore it is important to compare the output and equation error models. Three

important criteria on which to base this comparison are:

1) Performance capability. In particular, it is of interest to examine the

minimum achievable mean square error as well as the quality of the

parameter estimates. In other words, what is the best performance that can

be expected from the chosen model?

2) Characteristics of the MSE surface. The nature of the MSE surface can

drastically affect the ability of an adaiptive algorithm to minimize this

quantity.

3) Stability considerations.

I
2.3.1 Performance Capability

It is clear that in the problem of system identification, the best achievable

performance will be limited by the amount of measurement noise, v(n). This is easiest to I
see with the output error model of Figure 2.3. It can be seen that if b (q71 B (q- I ) and

A(q-1) = A(q-1), then oe(n)=y(n)-y(n)=v(n). Therefore the output error model will give

the best achievable performance when =0p, yielding the minimum MSE of Ov. In the

literature, i.e. [So88, eq.2.2], [Lj83, p.109], v(n) itself is often defined as the output error,

since this is the error which results from the output error model with the adaptive filter

adjusted so that ;=Op. This can also be seen in (2.14), where oe(n)=v(n) if O-O-Op=0.

Many adaptive schemes attempt to minimize the MSE, as will be seen in Chapter 3.

Q 7 _
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-Therefore, using the output error model. MSE - minimizing adaptive algorithms will

provide-what ,aiz caded unbiased estimares of the plant parameters after convergence. the

term unbiased refers to parameter estimates, b, whose ensemble average is equal to the true

plant parameters, Op. In other words, E[6]=Op after convergence. This is a desirable

property for an adaptive system to have.

If v(n) appeared by itself as an additive term in the equation error expression (2.7)

as it does in the output error expression (2.13) instead of being filtered by A(q-1), it could

similarly be reasoned that the equation error adaptive system simultaneously provides

unbiased estimates and minimum possible MSE of a2. Such a situation would occur if the

plant had an ARX (fta>, fib>O) or X (fia= 0, fib>O), since for these cases:

y(n) = OT(pee(n) + v(n)

Yt)= 4T(Pe(n)

and therefore:

ee(n) = y(n) - ,(n) = 0Tpe(n) + v(n) (2.19)

However, for the current, more practical case of the ARMAX plant structure

appearing in the equation error adaptive system of Figure 2.2, the issue of MMSE and

unbiased estimates is not as intuitively clear. Observe in (2.18) that if

O=O--p=O, then E[ee2(n)]=(l+ai+a2+. +a- a )O&. If this MSE is in fact the minimum

MSE achievable with the equation error model, then this model would also yield unbiased

estimates. It is not clear from a cursory examination of (2.18) whether this is so, as it was

in the output error case upon examination of (2.14). However, since the MSEE is

quadratic in the parameters, there should be no trouble taking derivatives to find the

parameter which yields the minimum MSEE. Minimization will be on (2.18), repeated here

for convenience:
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E[ee2(n)] = aTRO -V +

Since differentiation is with respect to 6, only the first two terms will have nonzero

derivatives. Differentiating the first term, remembering that 0=OP--6, yields:

=I
dO

Similarly differentiating the second term yields:

442ao2Ta] -2arva

Now setting the derivative equal to zero gives:

-2RO% + 2R0* + 2aO Ta = 0

Finally, solving for.the parameter vector, *, which gives the MMSEE yields:

= R Rgp - a a] = OP - 02R-la (2.20)

This is an important result. Examining (2.20), it is seen that one of two conditions must be

met if the equation error adaptive system of Figure 2.2 is to provide unbiased estimates:

1) v(n) a 0

2) a -0.

Condition 2) states that the plant has no autoregressive component, which implies an X

plant structure. Further examination of (2.20) shows that as the variance of v(n) increases,

the ai parameter estimates will be increasingly biased. This is the major problem with the

equation error adaptive system. Note that the bi parameter estimates, however, will be 3
unbiased.

9
99



29

It can-further be shown that. given neither of the above two conditions are met, the

minimum value of the MSEE is- always greater than the minimum value of the MSOE,

which is a,; as follows. Subsituting )* back into (2.20) yields the minimum value of the

mean-squared equation error.

E[Ce2(n ]min = R-a]T R- a + (1 +-iai+ . .. +4 )** V

_1[avR-1 a]Tarv

= + ..a +a( )+"ad - aTR

- (1+aTa)a - 14aTR-1a

o2a+ aalI-GR-1 a (2.21)

It can therefore be seen that the mean-square value of the equation error will be always

greater than that of the output error only if the term in brackets in (2.21) is positive definite.

To show this, it is sufficient to take R to be the autocorrelation matrix of the plant output,

y(n), and a to be the nax I vector of the ai parameters without the zeros appended as in

(2.17). Since v(n) is white and y(n)=p(n)+v(n), it can be seen:

R = R + 2 1

Postmultiplying the term in brackets in (2.21) by R will not change its definiteness.

Performing this operation yields the desired result:

1 1)
I--a-1 R = R - crI = R > 0
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It can thus be seen that the equation error model, in addition to providing biased estimates

of the plant parameter, Op, yields a higher value of minimum MSE than the output error

model.

Regarding this minimum MSE achievable by the equation error model, it is worthy

to note here a tradeoff that exists in this model. In general the minimum value of the MSEE

can be lowered'by increasing fia above ha. In fact, as fia-4o *, the MMSEE-,aV [Wi75,

Sec;iV]. In other words, the performance of the equation error model can be arbitrarily

improved by increasing the order of A(q-l,n). This, however, increases the

computational burden and memory requirements of the adaptive system.

These results illustrate the superiority of the output error model over the equation

error model'in the system identification problem, with.respect to the ability to reach an

"optimal" state, which is now seen to mean that it can provide simultaneous minimization

of the MSE-and unbiased estimates. This superiority is also intuitively reasonable, since

unlike the equation error model, the output error adaptive filter is an HR filter, just as the

assumed plant, and it would seem better to model an IIR plant with an IIR filter.

2.3.2 Characteristics of the MSE Surface

As noted in the previous section, many adaptive algorithms attempt to choose a

parameter, 0, in an (fia+fib+l) - dimensional space which minimizes the mean square error.

This is implemented in recursive fashion in an adaptive algorithm in such a way that, given

its last selection for the parameter vectort , 0(n-l), pick a new one, 6(n), which yields a

lower MSE. This is done by effectively "looking down" the MSE surface from an initial

estimate, 0(0), and choosing the parameter at the bottom as the final estimate. Different

Always having a "last" parameter estimate implies that the algorithm must be given an nitial estimate,
0(0), before starting.
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4gorthmsd6_thisi- different ways, but the main ooint here is that they are all trying to get

t6 that same "bottom' point. This process works fine if tLe, MSE surface is reasonably

smooth and has no local- minimum points, since 'looking down" from any parameter v'ector

I in the ('a +fb4+) - dimensional space will~always lead to-the minimum point.

it was seen,-in Section 2.2.1 that the equation error model has a quadratic MSE

surface. This yields a "bowl-shaped" surface in the parameter space, Therefore the

I minimum point can be found by "looking down" from any initial point, ;(0). Thus the

-,parameter yielding-the minimum MSEE will always be reached.

The output error model, however, has a much more complicated MSE surface and,

as noted in Section 2.2.2, it may have local minima. Therefore, simply "looking down"

the MSE surface may not lead to its global minimum point. Since there is no way for the

* algorithm to know if it is at a local or global minimum, it will converge to either, depending

on the initial estimate, b(0). By converging to a local minimum point of the MSE surface,

the ou:tput error model loses its most desirable feature which was discussed in the previous

I section: Simultaneously minimizing the MSOE (recall that this value is a2v) and providing

unbiased estimates of the plant parameters, 0P.

H The lack of global convergence of algorithms trying to minimize output error is the

major reason why use of the output error model has been mainly in computer simulations in

research labs and not in practical applications. Recently, however, an algorithm has been

developed which can provide unbiased estimates of the plant [Fa86]. This algorithm uses a

criterion slightly different from the simplistic "looking down the MSE surface" approach to

adapt the IIR filter of Figure 2.3. Since unbiased estimates are both a necessary and

sufficient condition for minimum MSOE in the output error model, this algorithm therefore

retains the desirable output error model property of simultaneous output error minimization

and unbiased estimates, but does not get stuck in local minima. This algorithm will be

studied in more detail in Chapter 3.
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2.3.3 Stability Considerations

Referring to the equation error structure of Figure 2.2, it is seen that this method of

system identification requires two FIR filters for its implementation. Adaptive algorithms

perform particularly well when adapting FIR filters, with respect to speed of convergence

to the parameter estimate, 0, yielding the minimum MSEE.

The output error model, on the other hand, requires an IR ddaptive filter, as shown

in Figure 2.3. The fact that IIR filters have poles as well as zeros imposes a stability

constraint on the .k(q-n) polynomial. This requires that every new estimate 0(n),

generated by the adaptive algorithm be checked to see if the resulting A(q-t,n) is stable

(ie. it has all its roots inside the unit circle). Factoring the ;.(q-l,n) polynomial to

determine its roots is a major computational burden when fia;_.5, however, methods have

been devised [Ju64] which can check the roots of a discrete-time polynomial for the

presence of unstable roots, similar to the Routh-Hurwitz test for continuous time

polynomials. This eliminates the need to factor ,(q-l n). If it is determined to possess

unstable roots, then the unstable estimate,

unst(n) 0(n-l) + A0(n)

should be replaced with the stable estimate

0st(n) = 0(n-l) + p(n)AO(n) where 05p(n)<l (2.22)

This process is known as stability projection [Lj83, Sec.6.6]. Note that the choice of

pkn)=O corresponds to effectively "throwing out" the unstable estimate. 6(n), by setting
0(n)=0)(n-l).

An example of the process of stability projection for the case of fia= 2 is shown in

Figure 2.4. It is shown in [Ha86, Sec.2.8] that stability is maintained if ,.nd only if the



point (al,a2) lies in the triangular region shown. Given the previous estimate. 6(n-1), the

current estimate as generated by the adaptive algorithm. OunstJ1), is shown to lie outside of
the stability region. To generate the estimate 0st(n), A 6(n) is repeatedly multiplied by a
small constant, pt, 0<p.<l, until 6(n) lies inside the triangular stability region. This yields a

value for p(n) in (2.22) of p(n)=itP, where p is the number of times that AMunst(n) had to

be multiplied by g.. Typically, the choice --0.5 works well. In the example in Figure 2.4,

it is seen that after multiplying AO(n) by g., the resulting parameter, 01(n) is still unstable.

Multiplying again by pi yields the final stable estimate, Ost(n).

a2
x--.--- 

01n Ou\ns t (n )

-2

Figure 2.4 An example of stability projection for fia=2

2.4 Summary

This chapter has illustrated in detail two very common examples of the two-step

modelling process of system identification as described in Chapter 1. The equation-error

model and the output-error model. The first step of selecting the plant structure was the

same for both models. In particular, an ARMAX plant structure N.ith C(q-1)=A(q-1) was
selected. This structure corresponds to a plant modelled as having a rational transfer

104



34

function with its output corrupted by additive white measurement noise (Figme 2.1) The

second step -selecting the adaptive filter structure -is xhat distinguishes the output-error

model from the equation-error model

The equation-error model simply uses the observable plant signals x(n) and '(n) as

inputs to seperate FIR filters, generating the adaptive filter output, y(n), as in (2.2). This

yields an X structure for the adaptive filter. The error signal for this model, ee(n)=y(n)-

y(n), is shown to be linear in the parameters, 0, yielding a quadratic MSE surface. this

type of MSE surface is very desirable because it is mathematically well-behaved and does

not contain local minima, as does the output-error MSE surface. However, the price paid

for the filter simplicity and quadratic error surface is biased estimates, shown in (2,20), and

minimum MSE which is greater than the measurement noise variance, ., shown in (2.21).

The output-error model employs an IIR adaptive filter, yielding an ARX adaptive

filter structure. This model has the ability to simultaneously provide unbiased estimates

and optimal minimum MSE of o . However, the tradeoff here is its MSE surface is highly

nonlinear and can have local minima. Furthermore, the adaptive IIR filter must always be

checked for stability before proceeding after a parameter update. This introduces the

additional computational burdens of stability determination and projection.
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CHAPTER 3

ADAPTIVE ALGORITHMS

In this chapter, recursive algorithms are developed in Sections 3.1 and 3.2 which

implement the process of "looking down" the MSE surface, as described in Section 2.3,2.

In Sections 3.3 and 3.4, algorithms are presented which use different criterion to identify

3 the plant parameters, 0p.

I 3.1 Gradient-Based Methods

I The simplest approach to recursively find a minimum point of a surface is called the

steepest descent algorithm. This method is described by the following 3-step procedure:

1) Locate the direction at which the surface is most rapidly descending from

the last parameter estimate, 0(n-l).

2) Choose the current estimate 6(n) as the estimate resulting from taking a

small step away from 0(n-l) in the direction determined in step 1).

3) Go back to step 1).

MathematPsally, the direction of step 1) above is related to the gradient of the MSE

surface. Consider a function f:IRn-IR. The gradient of f at a point xe IRn denoted

IE 7f(x), is a generalization of the derivative of a function of one variable, and is defined as:

ar x_. a x__. af(x!.lT3 ~ ~vfx) ..(x =axj axi axnJ

1: 35
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Given a point x0 on the f(x) versus x surface, the direction in which the slope is maximum

is precisely the direction of the gradient vector. Furthermore, the direction of minimum

slope is opposite to the direction of the gradient vector [F177, Sec.3.5].

The gradient of the MSE surface, denoted by VE[e2(n)] (recall that VE[e2(n)] is a

function of 9), is thus defined as the vector of its partial derivatives with respect to the

parameters &i, i=l, ... , fia, and hi, i=0, .-- , fib as follows:

VE[eO(n)] EOn] a[ n) EOn]DE[e(]l

a aabo b

Since the direction of minimum slope is -VE[e2(n)], the steepest descent method can thus

be expressed recursively as:

6(n) = b(n-1) - ,tVE[e2(n)] (3.1) 1
where l± is a small stepsize, which determines if and how fast the algorithm will converge. I
It is shown in [Ha86,Sec.5.4], for the equation error adaptive system, that the steepest

descent algorithm will converge if 0<< max, where Xna x is the largest eigenvalue of the

correlation matrix R = I-Pee(n)(pT(n)]. Also, in general for gradient-type algorithms, the

rate of convergence is proportional to g.

Recall from Chapter 1, however, that adaptive filtering applications are precisely

those in which the environment of the adaptive filter (i.e. the plant in the case of system

identification) is unknown and/or changing. This makes taking expectations difficult if not

impossible. Therefore, in order to design a practical algorithm, the expectation operator

must be dispensed with, yielding approximate or instantaneous gradient methods. There is

also an important theoretical justification for doing this: V[e2(n)] is by definition an

unbiased estimate of VE[e2(n)]. In the literature, these methods are often referred to as

stochastic gradient methods [Ha86,Sec 5.3]. These algorithms thus have the form:

107



37

0(n) = 6(n-1) - gV[e2(n)] (3.2)

In order to implement (3.2), the gradient must be determined. The gradient will have a

different form depending on which system identification model is used (i.e. output error or

equation error). These two gradient expressions are now derived.

3.1.1 The Equation Error Stochastic Gradient Algorithm

To find V[ee2(n)], the chain rule[F177, Sec.4.4] is first applied:

V[ee2(n)] = 2ee(n)V[een)) (3.3)

Recall:

ee(n) =y(n) - (n) = y(n) - 6T(n-l),,c(n)

Taking derivatives with respect to the parameters, b(n-1), noting y(n) is independent of

0(n-1) and thus Vy(n)--O, the following expression for the gradient of ee(n) is obtained:

Vee(n) = -(pe,(n) (3.4)

Substituting (3.4) into (3.3) and then into (3.2) yields the following expression for the

equation error stochastic gradient algorithm. This algorithm is known as the LMS

algorithm, which was developed by Widrow and Hoff [Wi75], [Wi76], [Ha86,Ch5],

[Wi85,Ch6]:

0(n) = 0(n-1) + .ptee(n)ee(n) (3.5)

Note the constant "2" has been absorbed into the stepsize, p±. Convergence requirements

for this algorithm are similar to those of the steepest descent method. In particular

I[Ha86,Sec.5.12,prop.2], for mean-square convergence of the parameters. 0(n-l):
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2. 2)
O _ = Tr(R) Input Power

Where, as before, the Xi's are the eigenvalues of the correlation matrix, R.

The LMS algorithm is the most widely used adaptive algorithm because of its

computational simplicity. Furthermore, since it uses the mean-squared equation error, it

possesses the desirable characteristics of the equation error model discussed in Section 2.3
(i.e. unimodal error surface and no adaptive filter stability problems). Thus, even though I
the equation error modes does not provide optimal MMSE and estimates of 0p, it is

dependable and does in fact perform satisfactorily in a wide variety of applications[Wi75].

3.1.2 The Output Error Stochastic Gradient Algorithm

Proceeding similarly as in the previous section, the gradient of oe2(n) must be

determined. As before, the chain rule yields:

Voe2(n) = 2oe(n)Voe(n)

The matrix expression for the output error is:

oe(n) = y(n) - y(n) = y(n) - 6T(n-1)poe(n)

As before, Vy(n)--O, so the expression for the gradient is:

Voe(n) = -VOT(n-l)qpoe(n)

This gradient cannot be evaluated as simply as in (3.4) in the equation error case, because

the y terms in (Poe depend on the parameters, 8. Expanding the matrix notation yields:

aI-6T(- 4)qpoe(n) = al(n-l)y(n-l) + + afia(n-1)y(n-fia)

- c(n-l )x(n) ..... - b-1)x(n-b) I
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In the following, the time index. (n-1), associateci with the adaptive filter Darameters ai and

bi will be omitted for convenience. The appropriate derivatives for the gradient vector must

now be taken, using the chain rule since y(n) is not a constant with respect to the

parameters [Jo84,Sec.llI.Aj:

-- .T. oe(n) A Dy(n-1) .y(n-i) - . 8Y(n-a)
a, -- - + +y(n-i) - -. aa

X"a ay(n-i)+
= + y(n-i)

= Ya - x(n -i)

= Ao(q-) -l]24n)- x(n -n) (3.7)

From the expressions (3.6) and (3.7), it is seen that:

Voe(n) -V TP-+(n)

-..Poy(n) +

[A(ql)- 1][aY~n aynyyn (3.8)

Dal aaia ao b

Since oe(n)=yfn)-ykn), Voe(n)=-Vy(n), which is the negative of the vector in second term

on the right of (3.8). Using this fact, (3.8) can be rewritten as:
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7oe(n) = -(poc(n) + [l-.-A(q-i)]voe (n)

The above equation can be simplified as:

A (q-l)Voe(n) = _%€(n)

Reintroducing the time index and solving for the gradient vector yields:

7oe(n) = , po(n)t (3.9)

Define the vector.

tpo(n) = pq,n- ) ,n)

This yields the following expression for the stochastic gradient algorithm for the output

error adaptive system:

0(n) = 0(n-l) + gpoe(n)oe(n) (3.10) _

It is important to note a significant difference between the output error algorithm of

(3.10) and the equation error algorithm of (3.5). The algorithm of (3.5) uses the equation

error regressor vector, pe(n), "as is," whereas the algorithm of (3.10) requires the output I
error regressor vector, oe(n), to be filtered by the autoregressive polynomial of the

adaptive filter. This characteristic of regressor filtering is very common among algorithms

which have been developed for adaptive IIR filters [Jo84], [Fa86], [So88]. Note that the

autoregressive filtering by A(q-l,n- 1) in (3.10) is appled to a vector. This implies that fia

past values of (Poe(n), which is a total of fia(fiaifib+l) values, be retained in memory to

This result can be arrived at more simply by considering the output error expressioa (2 11): oetn) = II

5(n-l)(poe(n)+vtn). Taking derivatives with respect to O(n-l) yields Voetn A=- pten). Since A(q-1)
A(q~~l) Te

, unknown, the best that can be done is to use its latest estimate 4(q- ,n-). This substitution yields
k3.7"). This is a common practical way of dealing with filtered quantities and will be used later.
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accomplish this operation. Assuming slowly time varying adaptive filter parameters, this

memory requirement can be reducea by implementing the filtering process in the following

approximate manner [Jo84,Sec.II.4], [So88,Remark 1) by defining the quantities:

y^F(n) =y(n)A(q-l~n-l),(n

xF(n) ( 1 x(n)
Aqn-)

The following approximation can now be used in (3. 10):,

(PE~ [F (n -I) ... F(n-fia) xF(n) ... xF(n-fib)] T

* This --proximate filtered-regressor expression requires that only (fia+fib+ 1) values of y(n)

and x(n) be stored in memory.

As mentioned in Section 2.3, the possible multimodality of the MSOE surface is the

major drawback of the output error model, because this can cause (3.10) to stall in a local

minimum. This fact can be seen more precisely now in terms of the gradient vector. At

any .ocal minimum point, the partial derivatives with respect to every variable are zero.

Thus VE[oe2(n] = 0 and it can be seen from (3.1) that b(n)=b(n-l). In other words,

gradient algonthints effectively "turn off" at local minima. Note that in addition to "turning

,I off" at local minima, gradient algorithms will "turn off" at local maxima and inflection

points as well. However, using the instantaneous gradient of (3.2) prevents the second

term of the algorithm from staying at 0. Therefore, at local maxima and inflection points,

the noisy gradient estimate will always perturb the parameter estimates, 0, slightly past

these points, and the algorithm will continue "looking down" until in reaches a minimum

3i point (global or local). The points of minimum MSE are referred to in literature dealing

m with convergence issues as stable [Mi82.Sec.5.3] conergence points of the gradientI
- agonthm (3.1). When the practical stochastic gradient algorithm (3.10) .ields parameter
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estimates near these points, they will oscillate 3bout them because of the noisy gradient

estimates instead of moving away as in the case of local maxima and inflection points.

3.2 Least Squares Methods

In the least squares (LS) scheme, it is desired to do more than merely move the

estimate, 0, in the direction of the minimum of the mean-square error surface. In

particular, the least squares estimate is the one which minimizes at every time instant, n, the

following criterion:

JLS(n) = f e2(i) (3.11)

This can be explained more intuitively as follows [Ha86, Ch.7]. Given some plant

input/output sequence (x(i)) 1, (y(i))} 1 , and a constant parameter estimate 0(n), the

output sequence of the adaptive filter, {y(n))n_, will produce the error sequence {y(i)-

This error sequence will produce a corresponding value of J(n). The LS

estimate, OLS(n), is the one which, when held constant through the interval i=l, ... n,

as above, yields the minimum value of J(n). The least squares method is seen to be a

deterministic method, in that no statistical assumptions or approximations have been made,

as in the gradient methods. t  Minimization thus takes place assuming only the plant

input/output record from the initial time up to the current time.

Consider the minimization with respect to 6(n) of the criterion (3.11), repeated

here:

mmttzauon o e2(i) is equivalent to minimizing -7"e-(i), which by the

',ov of ,arge numbers approaches E [en)] as n-,,o. Therefore, statistical methods based on the MSE
3ur.em: art asymptotically eqwvalent to least ,quares methods. In other words, both types of algorithms
will converge to the same point.
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The chain rule yields the derivative:

dJLS(n) - .e(i)--- 1e'---d=e-z i),. (3.12)
* d0(n) j=1 d0(n)

Setting this derivative to zero and solving for 0(n) yields the LS estimate based on n

observations, 6LS(n). To determine its value, the explicit expression for the error, e(i),

1 must be used. Thus in a similar fashion as in Section 3.1, both the equation error and

output error expressions will be utilized in (3.12) to derive adaptive algorithms for the

I equation error and output error adaptive systems.

I 3.2.1 The Equation Error Least Squares Algorithm

Using the matrix expression (2.3) for the output of the adaptive filter yields the

I desired expression for the equation error at the ith iteration:

ee(i) = y(i) - y(i) = y(i) - 0T(n)(pe(i)

As seen in Section 3.1.1, the derivative of this quantity is:

I deei) _VTee(i) T (i)

db(n)

Substituting these expressions into (3.12) and equating to zero yields the least squares

I estimate of 0 based on n observations, 0LS(n):
n

[y(i) _ T (n) (Peei)](PT(i) 0

*i Solving for OLS(n) yields:
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n n

T"y = ) 0Teg) (3.13)
i~l i=1

6LS(n) = [(Pee(i)(P(i)i Fy(i)(Pee(i) (3.14)

Even though (3.14) is a valid expression for the LS estimate, note that it is not recursive,

that is, (3.14) does not express 0LS(n) in terms of only the dam at the previous time

instant. In other words, it requires all the dam from the starting time to the current time.

It is possible to put (3,14) in recursive form as follows (Lj83.Sec.2.2.11 by

defining the term which is inverted in (3.14) as: I
n

TTIR(n) = p (&~p(i) = R(n-1) + yeen)pe(n) (3.15)

This definition used in (3.13) and transposing yields:

n
R(n)OLS(n) = Fy(i)(Pe(i) (3.16)

i= I

The summation above can be expanded to give:

n-i
R(n)bLS(n) = y(i)(Pe(i) + y(n)(pee(n)

i= 1

Applying (3.16) to the first term on the right above yields:

R(n)6LS(n) = R(n-l)bLS(n-1) + y(n)pee(n)

Now solving t3.15) for R(n-1) and substituting in the above expression yields:

R(n)LS(n) =[R(n)-ee(n)T(n)]oLS(n-l + y(n)qpe(n)
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R~n) OLSfn-l) + enI-,Tel(n)OLSfn-l)+Yfnl I

Finally, premultiplying by R-4 (n) and recognizing that the term in brackets is the equation

error, e.-(n), gives the desired result:

0 LS(n) = kLS(f-1) + R-I(n)q(ee(n)ee(n) (3.17)

The equations (3.17) and (3.15) constitute a recursive version of (3.14). However, notice

that the matrix R(n) must be inverted at each iteration, which is very time consuming. This

problem can be alleviated by defining the matrix:

P(n) = R1I(n)

The matrix inversion lemma can be used here to establish the following recursion to update

P(n) [Lj83,p.19]:

P(n) = P(n-1) - (3.18)1l' T,,(n)P(n-1)(pe(n)

This expression allows the inverted matrix, R-1 (n), to be updated directly, rather than first

calculating R(n) using t3.15) and then performing the matrix inversion. Note that (3.18)

eliminates the need for matrix inversion altogether, as it requires only a single scalar

division. The expressions (3.18) and (3.17) with R-1 (n)=P(n) constitute what is known

as the recursive least squares (RLS) algorithm.

Weighted Recursive Least Squares (WRLS)

In applications, it is often desirable to assign weights to the individual observations

of the least squares parameter estimation problem. Weighting an observation can indicate

some measure of its importance, accuracy, or relevence in determining the new parameter

estimate, 6(n). The particular choice of weighting assignments depends on the application.
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and can have either a heuristic or analytic basis. The criterion function (3.11), modified to

reflect weighted observations, is now:

n

JWVLS(n) = i)ee2(i) (3.19)
i---

where { (i) ) nU1 is the sequence of observation weights.

Carrying through the procedure of minimization of (3.19), and generating a

recursive formulation as done previously yields the following modified least squares

algorithm, commonly known as weighted least squares (WLS):

0(n) = 0(n-1) + aon)P(n)(p,,(n)ee(n)

a(n)P(n-1)(pee(n)(pT(n)P(n-1)
P(n) = P(n-) - T

1 +a(n) cpT(n)P(n-l)(pee(n)

Recursive Least Squares with Forgening Factor (RLSFF)

A par,..- tar weighting scheme which assigns progressively lower weights to past

observations is useful in dealing with time varying systems. This gives the least squares

algorithm the characteristic of "forgetting" data from the distant past which may not be

relavent in determining the current "optimal" value of the parameter estimates. Note that in

this scheme, a given observation will be systematically be assigned smaller and smaller

weights as the time index, n, increases. This is in contrast to WRLS, which assigns a

constant weight to each observation. The criterion function for this weighting scheme is

thus [Lj83,Sec.2.6.21:

n
JRLSFF(n) = PI,(i,n)ee2(i) (3.20)

i=1
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where the weighting sequence. (i, n is increasing in the variable i and decreasing in

the variable n. A typical choice for this weighting sequence is:

3 [3(i,n) = -

3 where X, called the forgetting factor, is constant, and 0<?, I. This choice of 13(i,n) is seen

to yield an exponential forgetting characteristic when considered as a function of the time

variable, n. A forgetting factor, X, yields an algorithm with an effective "memory" of the

past 1/(1-X) observations [Sh891.

Allowing the RLS algorithm to "forget" past observations in this manner produces

an increase in the "bouncing around" of the estimates, 0(n), about their target values in the

steady state, resulting in a higher value of MMSE. This is because useful past data is

I effectively "thrown out," leaving the algorithm more sus'eptible to the noise contribution in

fewer observations. This characteristic illustrates a general tradeoff which exists in most

adaptive algorithms between tracking ability and MMSE.

'I As before, carrying through the minimization of (3.20) and derivation of a recursive

algorithm yields the following algorithm, known as recursive least squares withforgening

II factor (RLSFF):

1 6(n) = 6(n-l) + P(n)ee(n)ee(n)

P(n) = P(n-l) - I T pe

I 3 lWeighted Recursive Least Squares withi Forgetting Factor (WRLSFF)

- The three previously presented least squares algorithms can be lumped into one

algonthm by employing both weighting schemes simultaneously. This algorithm is called

3 weighted recursive least squares with forgetting factor (WRLSFF):
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6(n) = 6(n-1) + a(n)P(n)(pe(n)ee(n) (3.21a)

-1 i x(n)T,:e) (n)(nTen)P3.-1b)

L) Pn-)}- X+a(n)ym(n)P(n-l)(pee(n)

This algorithm obviously includes RLS, WRLS, and RLSFF as special cases with

appropriate choices for at(n) and X.

As a computational issue, note that all the least squares algorithms given previously

require that P(n-l)(pee(n) be evaluated to determine P(n) and then subsequently evaluating

P(n)Tpe(n) to update 0(n). This latter matrix multiplication can be avoided by manipulating

the P(n) update equation (3.21b) by postmultiplying both sides by (pee(n) and expressing

the term in brackets over a common denominator .

P(n)qpe(n) [XP(n-l)cpee(n)

+a(n)P(n-1)(pe(n)cpT(n)P(n- 1)opee(n)

-a(n)P(n- )~(n)poT(n)P(n-l) pee(n) a(+a(n)gPT(n)P(n-l)(pee(n))

= n P(n-)(pee(n) ]

X,+a(n)g T WnP(n-1) pee(n)

Using this relationship, the least squares recursion of (3.21) can be implemented in the

following four-step procedure:

1) Calculate M(n) , P(n-l)qpee(n) (3.22a)

2) Calculate L(n) = (n)(n) (3.22b)
X+a(n)(pT(n)M(n)
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I 3) 6(n) = k(n-l) + L(n)ee(n) (3.22c)

i 4) P(n) = ! [P(n-l) - L(n)MT(n)] (3.22d)

I 3.2.2 The Output Error Least Squares Algorithm (RPE)

I Unfortunately, analytic minimization of the criterion (3.11) when e(n)=oe(n) turns

out to be impossible for a recursive algorithm. This is because of the highly nonlinear

relationship between the parameter estimates, 0, and the corresponding adaptive filter

3B output, y(n)=bT(Pee(n). The difficulty lies in the problem of solving (3.12) set equal to

zero for the least squares estimate, &LS(n). Recall for the equation error case, e(i) is linear

3 in 0 and thus de(i)/d6 is constant. This gives rise to the estimate OLS(n), which is the

solution to a linear (matrix) equation. The nonlinear equation resulting when using the

output error model cannot be solved so simply. Instead, numerical methods must be

1 utilized to minimize (3.11). This procedure usually requires several evaluations of (3.11)

which uses all of the data since the initial time, n=l. Therefore, a recursive algorithm

based on this type of minimization is not possible.

It is thus necessary to introduce approximations in the quest for a recursive

algorithm in order to attemnt to minimize (3.11). A very general method is presented in

I [Lj83,Sec.3.7.2], which accomodates a plant having the structure of an extended form of

the Box-Jenkins model, which was briefly mentioned in Chapter 1. Algorithms such as

I this which can approximately minimize the least squares criterion for plar.t structures that

are more complicated than ARX are known as recursive prediction error (RPE) methods.

The problem at hand is to mnimize (3.11) using the output error. oe(n), as the error

term. ekn). The output error should be thought of here more generally as the error between

an adaptive filter and a plant having the ARMAX structure of Figure 2. 1. Notice tit.t no
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mention has been made here of the structure of the adaptive filter. This is because the

general RPE method specifies the structure of the optimal adaptive filter based on the plant

structure. It turns out that the ARX adaptive filter of the output error adaptive system,

shown in Figure 2.3, is the optimal adaptive filter structure for use with given ARMAX

plant structure. This should not be surprising, given the investigation and discussion of

the properties of the output error model given in Chapter 2 (i.e. unbiased estimates and

minimum possible MMSE of oY2).

The RPE algorithm is now shown here in the context of the output error adaptive

system of Figure 2.* :

O(n) = 0(n-l) + P(n)W(n)oe(n) (3.23a)

P(n) = ~[P(n-l) - ~o(n)P(n-l)v(n)xVT(n)P(ri-l) (3.23b)

where
I

'V(n) = -Voe(n) ,(q- n-l) Toe(n)

The forgetting factor, X, and observation weighting coefficient, c(n), have also been

included here and serve the same purpose as in WRLSFF. Note the striking similarity

between the RPE algorithm and WRLSFF. In fact, the RPE algorithm reduces to

WRLSFF when the equation error quantities, ee(n) and (Pee(n), are used in place of the

corresponding output error quantities, oe(n) and (poe(n). Also note that (3.23a) reduces to

the gradient methods of (3.5) and (3.10) for the equation error and output error cases,

respectively, when P(n)- l. These are some .amples of the generality and wide

applicablilty of the RPE algorithm, It should also be noted that (3.22) can obviously be

used to implement the recursion (3.23) with the appropriate changes of the notation.
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3.3 The Method of Optimal Bounding Ellipsoids (OBE)

Recently, a system identification technique providing an alternative to least squares

equation error minimization has been proposed [Fo82], [Da87]. In these papers,

algorithms were developed which perform optimization based on geometric considerations

rather than the analytic minimization of (3.11). What sets these algorithms apart from least

squares methods is the manner in which the contribution to the plant output of the noise is

characterized. Instead of imposing some statistical assumptions on the noise (i.e. white

noise), as has been the case thus far, these algorithms were developed assuming that the

noise contribution in the plant description has a magnitude bound, y, at every time instant,

n. This key assumption gives rise to an algorithm having the ability to decide very quickly

whether the current data observation, (pe,(n), yields any additional information which could

improve upon the previous estimate, b(n-1). If it is determined that Pee(n) contains no

new information, updating (a computationally expensive operation) need not occur. In

other words, this algorithm possesses the very attractive characteristic of selective

updating. This feature has been seen in simulations to reduce the amount of computation

considerably, as the algorithm tends to use less than twenty percent of the input data

[Hu861.

The geometric criterion used in the OBE algorithms is described using the concept

of a membership set. A membership set is the set of points in the parameter space which

are consistant with the data observations, assumed plant structure, and the noise bound.

Initially, the membership set is the set of all points in the (fiatfib+ 1)-dimensional parameter

space. Practically, however, it is chosen to be a very large (fial-fibl)-dimensional

ellipsoid which must include all possible valid parameter values of the plant. Starting vith

this initial ellipsoid, the following algorithm is then implemented:

122



I

1) A check is made of each subsequent data observation to determine if the

"size" of the previous ellipsoid can be reduced by utilizing the current data I
(regressor vector), (pee(n).T I

2a) If so, a new, smaller ellipsoid is then determined by the algorithm.

2b) If not, the current data is discarded, the previous ellipsoid is kept as the I
current ellipsoid, the next data observation is brought in, and the process is

repeated by returning to step 1),

At each iteration, k, the corresponding parameter estimate, 0(k), is taken to be the center of

the ellipsoid generated so far from the current and previous iterations, i=l,..., k.

The algorithm derived in [Da87] using a 2(n) as an optimization parameter, has a

very familiar form. In fact, it is identical to WRLSFF of (3.21) with a data-dependent

scheme of generating the weighting coefficients, cc(n). A time-varying forgetting factor,

X(n), is also employed, and is related to the weighting coefficient by:

X(n) 1- a(n)

Define the following quantities, as in [Da87]:

TG(n) = yeT(n)P(n-l)qe(n)

3(n) = - 2(n-1)
ee2tn)

e (0,1), a design parameter

The OBE algorithm is now presented:

Various measures of the "size' of the ellipsoid have been employed. In [Fo821, the size was defimed in
two ways, each yielding a shghtly different algorithm. The two measures of size were 1) the volume of the
ellipsoid, and 2) the sum of the semi-axes of the ellipsoid. In [Da87], a more abstract minimization
%,ntenon, a2(n) (note this has nothing to do with noise variance), %as used. This was seen to yield a
bimpler algorithm which is essentially an implementation of WRLSFF, as will be seen.
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while (not done) do begin

get the current data vector, (pee(n)

if )> a2(n-1) + ee2(n) then begin (no update needed)

o2(n) = a2(n-1)

6(n) = 6(n-l)

end

else begin (determine the weighting coefficients, a(n), the new value of

a-(n), and update with WRLSFF)

1 1 G(n) 'ifPn[n)]+>v(n) = 1.-4(n) 1 l+P3(n)G n)_l] ,1 ()On)l+>

if P3(n)[G(n)-l]+lO

a¢(n) = min(,v(n))

a 2(n) = [1--a(n)]o 2(n-1) + a(n)ya - n)[1- a (n)ee2(n)

I-L(n) + c(n)G(n)

implement (3.21) with X(n) = I - a(n)

end (if)

end (while)

In summary, the OBE algorithm possesses two key properties which could be very

desirable in applications. They are:

1) The bounded noise assumption. Most algorithms employ statistical

assumptions to characterize the noise contribution in the plant output (i.e.
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white noise). In practice. however, satisfaction of these assumptions are

both difficult to guarantee and verify. In practice, it is usually much easier

to obtain a magnitude bound on the output noise.

2) The selective updating strategy. This frees the algorithm for about 70-80%

of the total running time, which opens up (largely unexplored) possibilities

for time-sharing the algorithm with multiple processes.

3.4 The Steiglitz-McBride Method (SMM)

As mentioned at the beginning of this chapter, both the gradient and least squares

algorithms implement the process of "looking down" the MSE surface. In Section 2.3.2, it

was described how local minima in the MSE surface of the output error adaptive system

could cause this type of algorithm to fail. It is therefore of interest to examine alternative

methods of system identification which do not require unimodality if the output error

surface for convergence of the adaptive filter parameter estimates, e, to the piant

parameters, Op,

An adaptive algorithm was developed recently by Fan [Fa86] which minimizes a

criterion first considered by Steiglitz and McBride. For sufficient order adaptive systems

(i.e. haZna and fibPnb), the SMM criterion has a unimodal character containing a global I
minimum which coincides with the global minimum of the MSOE surface. Simulation

studies have also shown this to be true in some reduced order cases (i.e. ha:_na or fib-<nb).

Reduced order adaptive systems are of extreme interest, since in most practical situations,

the plant order, na, is unknown.- Furthermore, in many cases, the plant may not even be

of the form B(q-l) /A(q- 1) as has been assumed throughout this thesis. In this case, an

In fact, reduced order systems can cause the existence of local minima in the MSOE Furface. Cases have
been documented [St8l] of adaptive systems, possessing unimodal MSOE surfaces with a sufficient order
adapave filter, aaving muitmodal MSOE burfaces Y, hen the sufficient order adaptive filter is replaced with
one of reduced order. I
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adaptive filter of sufficient order would need an infinite-dimensional parameter vector, 0

(i.e. fia--oo and/or fb-). Thus acceptable (hopefully optimal in some sense) reduced

order performance is an important feature for any practical adaptive system to have.

The SMM scheme is presented here as follows. Consider the ARMAX plant of

Figure 2.1, described by the relationship:

A(q-l)y(n) = B(q-l)x(n) + A(q-l)v(n)

If the quantities x(n), y(n), and v(n) are autoregressively filtered by the A(q-1)

21 polynomial, the above relationship can be expressed as:

A(q-l)y'(n) = B(q-l)x'(n) + v(n) (3,24)

where

y'(n) = A(q-l) y(n)

1
x'(n) A(q-l) x(n)

In what follows, it will be seen that minimization of the eqation error of the

I "primed" adaptive system having the plant described by (3.24) will be the goal of the SMM

algorithms. This is the essence of the SMM approach. Minimization will be accomplished

using both the gradient and least squares techniques.I
3.4.1 Gradient Minimization

Observe that (3.24) describes an ARX plant with input x'(n) and output y'(n). As

Imentioned in Section 2.3.1, the equation error adaptive system will simultaneously provide

minimum MSE of a. and unbiased estimates for ARX plant structures. Therefore, one

might expect the algorithms presented thus far for equation error systems to perform
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optimally for the "primed" equation error adaptive system having a plant described by

(3.24), with input x'(n) and output y'(n). In particular, applying the LMS algorithm of

(3.5) yields:

O(n) = 0(n-l) + ItpSMM(n)ee'(n) (3.25)

where

(pSMM(n) = [-y'(n-l) ... -y'(n-na) x'(n) ... x'(n-nb)] T

I

A(q-) yee(n) = ee(n)

and ee'(n) is the equation error of the adaptive system having the ARX plant described by

(3.24),

The relationship between ee(n) and ee'(n) will be needed later. It can be derived

simply as follows: From (2.19) applied to the ARX system of (3.24), it is seen that I
ee'(n) = -Tp(n) + v(n) (3.26)

The expression for the equation error was given in (2.7) as: I

ee(n) =T(pe(n) + A(q- l )v(n) (3.27)

Autoregressively filtering each term of (3.27) by A(q- 1) yields:

1 ee(n) =Teen) + v(n) (3.28)A(qy-1) --~(n

Thus it is seen from (3.26) and (3.28) that: I
ee'(n) = ee(n) (3.29)

A(q-1)

This relationship should have been expected, since the "prime" has denoted here an

autoregressive filtering by A(Q1).

I
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Note that generating the filtered regressor. (peekn), requires knowledge of the A(q-l)

polynomial, which is not known. As mentioned in the footnote of section 3.1.2 regarding

the generation of an expression for Voe(n), the most recent estimate of A(q-1), which isI
A(q-l,n-1), can be used to (approximat, :) implement the filtering operation. Thus thea following approximation is made, yielding the "IF" algorithms of [Fa86]:

(%en) - A(q-') pI(n) = -(q4,n-1) pe(n) (3.30)

This filtering operation can be further simplified, as was also shown in Section 3.1.2, by

defining the filtered quantities:

_.,fln) - A(q-,n_1) y(n)

Therefore a simpler approximation to Tee(n) is:

&e(n) = [yF(n-1) ." yF(n-fia) xF(n) -xF(nfib)] T (3.31)

This approximation yields the simpler non-"IF" algorithms in [Fa861.

In addition to making the regressor filtering realizable, a very interesting

relationship results from using k(q-1,n-l) for the filtering operation. The relationship

(3.29) is now modified to:

ee(n) = - A(q,n-l) ee(n)= oe(n) (3.32)

In light of the approximate equivalence between ee'(n) and oe(n) in (3.32) as the AR

adaptive filter parameters converge to those of the plant, it has been shown [Fa86] that the

LMS-type algorithm of t3.25), through minimization of the "primed" adaptive system

equation error, ee'(n), mill approximately minimize the output error of the original
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ARMAX adaptive system of Figure 2.3, thus providing unbiased estimates. Also, in order

to generate a realizable algorithm, t3.32) can be applied to t3.25), yielding the output error

algorithm given in (Fa86]:

6(n) = 6(n-1) + q e(p(n)oe(n) (3.33)

Aspreviously ment:oned, (3.30) or (3.31) can be used to approximately determine yee(n),

yielding the "IF" and non-"IF" algorithms, respectively, in [Fa86].

3.4.2 Least Squares Minimization

It is also natural to consider a least squares minimization of the equation error of the

"primed" adaptive system in addition to gradient minimization. This is accomplished

straightforwardly by recalling the least-squares criterion introduced in Section 3.2:

JLS(n) = e2 (i)

For the current problem, e(i)-ee'(i), yielding the following criterion for the "primed"

equation error system:

n
JLS(n) = ee' 2(i) (3.34)

i-I1

Recall that the sequence of error values, { ee'(i) } 1,is obtained by holding the parameters

of the adaptive filter constant in the interval i=1, ... ,n, these parameters being denoted as

6(n). Applying the equation error relation (2.8) to the primed system thus expands (3.34)

to:

JLS(n) = Y[A(q-l,n)y'(i) - §(q-1,n)x'(i)]
=1
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* Finally, again recall the process of implementing filtered quantities - the last available

estimates are used to filter the desired signal. Thus, substituting for the signals x'(i) and

y'(i) their actual realizations yields the desired least squares criterion for the "primed"

adaptive system:

!1 JLs~n[ =  " qz ,n' ) _ q ln . ,XWi -2( .5

-LS(n) = j- Atq- (3.35)

This is the general form of the SMM criterion [Fa89], which has been seen to exhibit a

unimodal characteristic even when the original output error least squares criterion, Zoe2(n),

(or equivalently the MSOE surface) is multimodal.

It is interesting to consider the criterion (3.35) as the estimates converge to the true

plant parameters. In this case, most of the polynomials

A(q-li) and b(q-1,i)

for i=l, .. , n, will be approximately equal. Therefore, upon convergence to the plant

parameters, the criterion will approach the following expression:

n2

JLS(n) [y(n) - (q) x(n)

The term in brackets is now seen to be the output error, oe(n). Thus it is seen that

if the plant parameters do in fact minimize JLS(n), minimization of this criterion is then

* equivalent to output error minimization. This has been proved for the case of a sufficient

order adaptive system having white output noise, v(n) [Stc8 1].

Returning to the original SMM criterion of (3.35), it can be seen that minimization

of JLS(n) is exactly the same as least squares minimization on the "primed" adaptive

system, i.e., considering the signals x'(n) and y'(n) as the input and output signals to an

ARX plant. Also in light of the equivalence between JLS(n) and JLS(n) as 0(n)--p, it has
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been shown that the output error, oe(n), can be utilized in place of ee'(n), similar to the

gradient case. Therefore, the SMM algorithm is the following modified version of RLS:

O(n) = 0(n-l) + R-lpqee(n)oe(n)

R(n) = R(n-1) + qe(n)p(p (n)

The above algorithm will be referred to as SMM(RLS), since it uses the recursive least

squares algorithm in the context of the "primed" adaptive system of the SMM approach.

Note that the data weighting and forgetting factor techniques discussed in Section 3.2.1 can

also be utilized to implement the SMM approach. In the following chapter, the behavior of

one of these standard SMM algorithms, SMM(RLSFF), will be observed through

computer simulations and compared with a new SMM-type algorithm. I
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CHAPTER 4

SOME NEW OUTPUT ERROR ADAPTIVE ALGORITHMS

4.1 Use of OBE in the Output Error Adaptive System

Until now, the OBE algorithms have not been implemented in an output error

adaptiF system for identification of the ARMAX plant of Figure 2.1. One of the OBE

algorithms has been extended [Rao89, Ch.3], however, in a manner similar to the extended

least squares (ELS) scheme [Lj83, Sec 2.5.1], which permits identification of a general

ARMAX plant (EOBE). Though this is an important result in its own right, it places

restrictions on the ci coefficients of the plant to ensure proper convergence of the adaptive

filter parameters. This limits the plants to which this technique can be applied since, in

general, there is no control over the plant parameters. For the current ARMAX system

identification problem, it was shown in Chapter 2 that ci=ai, for i--O, .. .,n a (a= ). It will

be shown here that this ARMAX case can alternatively be dealt with by considering the

output error adaptive system.

To understand the reason why OBE cannot be directly applied to the output error

adaptive ,ystem, consider the expression for the output, y(n), of the plant, given as:

y(n) = -2aiy(n-i) + tbix(n-i) + 2aiv(n-i)

i=l i=O i=0

Recall the key assumption of the OBE algorithm: The contribution of the noise to the plant

output must be bounded. In practice, the quantity which is most realistically bounded is the

61
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output noise term, v(n). However. knowledge of a magnitude bound on v(n) is not

equivalent to knowing a bound on the total noise contribution to y(n). This is because the

noise contribution is actually an FIR filtered version of v(n), with the filter being the

unknown autoregressive plant polynomial. A(q- 1). Since the noise bound depends on the I
unknown plant parameters, applying OBE in this situation is not a well-posed problem. I
This is one of the reasons why for a proper operation of OBE on this system, some

rstrictions must be piaced on the ai coefficients to ensure that the total noise term satisfies a

bound when v(n) itself is bounded [Rao89, Sec.3.3].

4.1.1 Presentation of the Algorithm

As an alternative to the general ARMAX identification scheme of EOBE, again

consider the plant description, given in operator notation:

A(q-l)y(n) = B(q-l)x(n) + A(q-l)v(n) I
Autoregressively filtering each quantity by A(q-1), exactly as done in Section 3.4, yields

an SMM-type approach to identification of the plant: I

A(q-1)y'(n) = B(q-l)x'(n) + v(n) (4.1)

It is important to see here that now v(n) appears "as is" in the alternative plant description

(4.1), and thus the bounded noise assumption is directly satisfied without requiring any

restrictions on the plant. Furthermore, note that (4.1) describes an ARX system with input

x'(n) and output y'(n), which is the structure needed to utilize OBE. Also, recall (Section

3.4, Eq.(3.32)) the approximate equivalence of the error in equation error adaptive system

Using k4.1) as the plant description and the error of the output error adaptive system having

the original ARMAX plant. I
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Therefore, using OBE to identify the original ARMAX plant is equivalent to

applying the algorithm to the "primed" ARX system of (4.1). This will require two

modifications to the original algorithm:

1) The signals x'(n) and y'(n) must be used as the input and output quantities

in the regressor vector. In other words, pee(n) must be used in place of

pee(n) in the standard OBE algorithm. Two methods of generating (pe,(n)

were given in Section 3.4, Eqs. (3.30) and (3.31).

2) The output error, oe(n), of the adaptive system having the original ARMAX

plant must be used in place of ee(n) in the original OBE algorithm. This is

possible in light of the approximate equivalence between the equation error

of the "primed" system, ee'(n), and the output error, oe(n).

This algorithm will be referred to as SMM(OBE).

As a test of this algorithm, simulations were performed for three cases considered

in [Fa86], where the authors' algorithm (3.33) was shown to converge to unbiased

estimates of the plant:

Case 1) Sufficient order adaptive filter, unimodal performance surface.

For this case the output error adaptive system is described by:

B(q- 1) I

A(q-1) - l-l.2ql+0.6q 2

13(q-1,n) 6o(n)

(q-l,n) -14!(n)q-1_a,(n)q 2

A uniformly distributed, zero mean, unit variance, white sequence was used as the input.

xkn). It was shown in [Str8 1] that the error surface of this adaptive system is unimodal.
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Case 2) Sufficient order adaptive filter, multimodal performance

surface.

A multimodal error surface was constructed in [So75], using the following adaptive

system:

B(q- 1) 1 1
A(q - 1) (1-4.7q-) 2 1-1.4q-4+0.49q- 2

^B_(q-,n) 6(n)
, (q-l,n) - l-aj(n)q-1-_]2(n)q_ 2

The input sequence, x(n), was a correlated sequence, obtained by passing uniformly

distributed, zero mean, unit variance, white noise through the following filter:

(1-0.7q-1) 2(1+0.7q-1) 2 = 1 - 0.98q-2 + 0.2401q- 4

Case 3) Reduced order adaptive filter, multimodal performance

surface.

The multimodal reduced order adaptive system examined here was introduced in

[Jo77]. It is described by:

B(q-1) 0.05-0.4q- 1

A(q-1) - 1-.1314q- 1+0.25q- 2

b(q-ln) 60(n) I
A(q-',n) l-al(n)q-1

As in case 1), the input, x(n), was a uniformly distributed, zero mean, unit variance, white I
sequence. I

1
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In all the simulation cases, the output noise, v(n), was a uniformly distributed, zero

I mean white sequence independent of the white sequence generating the input, x(n). It

should also be noted here that stability projection (see Section 2.3.3) was used, because of

the IIR structure of the adaptive filter. The simulations were run with the following

questions in mind: 1) Is this algorithm a viable alternative to output error adaptive system

identification? More simply put, does this algorithm work at all? 2) If the answer to 1) is

I affirmative, then how does SMM(OBE) compare to the "standard" SMM algorithms

[So88], which use equation-error minimization algorithms such as LMS [Fa86], or RLS.

This latter algorithm will be denoted as SMM(RLS).

A partial answer to question (1) was obtained by running the simulations and

checking for global convergence. To illustrate proper operation of SMM(OBE),

I simulations were run and the behavior of the parameter estimates was observed. For the

2sufficient order cases 1) and 2), recall from Section 2.3.1 that MMSOE=a 2, and the

parameters which yield this MMSOE are precisely those of the plant, 0. On the other

I hand, in the reduced order adaptive system of case 3), there is no "true" parameter vector

that the adaptive filter can take on that will match the plant exactly, since 0 and 0 have

I ldifferent dimensions. The resulting MSOE surface for this adaptive system will thus have

a minimum point which is greater than ac, due to the inability of the adaptive filter to

"match" the plant. The disparity between the minimum MSOE achievable with a sufficient

order adaptive filter and that achieved by a reduced order adaptive filter is caused by what is

known as model mismatch. In other words, the minimum MSOE of a reduced order

I adaptive system can be thought of as being separated into two components as follows:

5 MMSOE =MMSOEV + MMSOEmm

I where MMSOEV is the minimum mean square output error due to the output noise, v(n),

obtained by considering the adaptive filter to be of sufficient order. Again recall from
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Section 2.3.1 that MMSOEV=( V. The term MMSOEmm is the minimum mean square

output error due to the model mismatch, which is obtained by taking v(n)-=O and generating

the resulting MSOE surface. This was done in JJo77] for the simulation case 3), where it

was shown that MMSOEmm--0.2066, occurring for the adaptive filter parameters of:

= [ 1 bo]T = (-0.906 -0.31 1]T

Recall for simulation cases 2) and 3), the MSOE surfaces are multimodal [Fa86].

Therefore, to illustrate global convergence in these situations, initial estimates, 0(0), were

provided which were very close to a local minimum of the MSOE surface. The parameter n

trajectories of the adaptive filter were then observed to see if the parameters were adapted

such that they moved away from the parameter yielding te local minimum MSOE to the m

one yielding the global minimum MSOE. The trajectories obtained for cases 1)-3) are n

shown in Figure 4.1 for a simulation run of 1000 iterations, which was well after

convergence." Shown is the initial parameter estimate, 0(0), the final estimate, b(10o), m

and the theoretical parameter estimate, 00, yielding the MMSOE. In the simulation cases 2)

and 3), the parameter estimates are seen to be adapted away from the parameter yielding a

local minimum MSOE towards the one yielding the global minimum MSOE.

Convergence was determined by viewing the leaming curve, to be discussed in Section 4 1 2
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a, 6L (0)=[0.8 0.2 OT

N 0(1000)=[-l.16 0.57 0. 96]T
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-0.5
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Figure 4.1a Simlation case 1) trajectories
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6(0)=(1.4 0.5 O T

0.4
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Figure 4. lb Simulation case 2) trajectories
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a j

.5(0)=(O.5 0.21T

0(1000)=(-0.84 -0.35]T

9o=(-.91 -0.311T

-10 , , , I , ,9,99 ,9199, ,, ,I

-0.4 -0.3 -0).2 -0.1 0.8 0.1 0.2

Figure 4.lc Simulation case 3) trajectories

A remark is in order regarding the trajectories shown in Figure 4.1. Note that the

trajectories given for cases 1) and 2) are a plot of a2 versus il. The reason for considering

only the AR parameters as opposed to the X parameter b0 is that in the sufficient order

case, the MSOE surface of an output error adaptive system is quadratic in the X

parameters, and the X parameter estimate which minimizes the MSOE is in fact the true

parameter, b0. Thus there is no problem obtaining unbiased estimates for these parameters

because there are no local minima with respect to them, as might happen with the AR

parameter estimates. However, this is not true in reduced order adaptive systems.

Therefore, in the reduced order case 3), the plot of a, versus b0 is considered. This is

because the MSOE surface is a highly nonlinear function of both the AR and X

,oefficients." and thus in addition to the behavior of the a, parameter. the behavior of the

" See (Jo77] or (Sh89l For the explicit expression for the MSOEr=m ..urface. i.e., the expression of MSOE

in terms of 6 and il with v(n)-=O.
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estimate b0 needs to be observed for proper convergence to the parameter yielding

MMSOE.

Thus from the results shown in Figure 4.1, it appears that the answer to question

(1) above is "yes," i.e., SMM(OBE) did in fact identify the parameters of an ARMAX plant

in the output error adaptive system configuration for the simulation cases 1)-3). Next,

attention is given to the more interesting (and more difficult) question (2), which is the

subject of the next section.

4.1.2 Performance of SMM(OBE) versus SMM(RLSFF)

-Depending on the application, the environment in which an adaptive system is

operating could have either a large or small noise content. It is therefore of general interest

to examine the performance of adaptive algorithms operating on systems with varying

levels of noise. Furthermore, the examination of performance with respect to different

noise levels can also serve as a basis of comparison between different algorithms. Of

particular interest here is an investigation of the performance of a "standard" SMM

algorithm, SMM(RLSFF), with respect to the new SMM algorithm, SMM(OBE).

To compare the two algorithms in this manner, simulations were performed on the

simulation cases 1)-3) for varying signal-to-noise ratios (SNR's). The SNR is defined as:

2a :a

Usually (as will be the case in this discussion), this quantity is given in decibels (dB),

convening the above expression to:
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SNR(dB) = iOlog-

The SNR was varied from -10 to 10 dB, in steps of 2 dB, which was accomplished by

appropriately scaling the uniform output noise, v(n), with respect to the input signal. The

algorithm SMM(RLSFF) was implemented with a forgetting factor, X, of 0.99. At each

value of the SNR, SMM(RLSFF) and SMM(OBE) were compared with respect to two

criterion:

1) The minimum value of MSOE which was achieved (MMSOE).

2) Transient MSOE behavior.

Both criteria were evaluated through the consideration of the adaptive system learning

curve, which is a plot of the MSOE versus n, the number of iterations. Initially, at the start

of adaptation, the MSOE is usually high, since the initial adaptive filter parameters, 8(0),

are probably much different than the true plant parameters, 0p. As adaptation proceeds, the

estimates, 8(n), generally adapt so as to get closer to 0 This process yields a

monotonically decreasing sequence of MSOE values as a function of the time index, n. For

an algorithm which does in fact converge, this sequence will approach some constant

minimum value as n gets large (i.e. the MMSOE)t

Note that the characteristics described above for the learning curve apply to the

curve E[oe2(n)] versus n. To determine this curve experimentally would require taking an

ensemble average of an infinite number of independent realizations of oe2(n) versus n.

Obviously this is not possible. However, averaging a relatively small number of the curves

oe2(n) versus n provides a very good indication of MSOE performance, even though these

For this to be true, the common assumipuon made here kand throughout this discussion) is that the plant
is fixed and that the input and noise sequences, x(n) and v(n), are stationary.
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curves may not have the precise monotone characteristics of the actual learning curve. In

I fact, there will be considerable fluctuation in these curves, as will be seen.

With these properties of the learning curve in mind. the two performance criteria are

now considered for SMM(RLSFF) and SMM(OBE).

MMSOE

After viewing the learning curve resulting from each simulation case at every SNR

I using both algorithms, it appeared that all of the curves reached their minimum, steady-state

levels well before 1000 iterations. See Figure 4.2 for a typical example of this transient

behavior for both SMM(RLSFF) and SMM(OBE). The quantity used as an approximation

to the MMSOE was a time average of the last 50 valuesof the experimental learning curve.

This value will be called the steady-state MSE (SSMSE). To compare the two algorithms

with respect to this quantity, the SSMSE was plotted as a function of the SNR. These

plots are shown for each of the simulation cases in Figures 4.3a, 4.4a, and 4.5a. Observe

that the curves have an exponential characteristic. To see why this is so, recall from

3 Section 2.3.1 that the minimum value of MSOE is oaV, occurring when 6=0P,. Therefore,

the experimental curves should approximate a curve of ( versus SNR. But rccall that the

SNR is related to as follows:

SNR(dB) = 10log-

Solving for Oav yields:

I = . 'alo-SNR(dB)]
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where the function alog is the inverse of the (base 10) log function. It is thus seen that the

theoretical MMSOE versus SNR curve has the above exponential form. The theoretical

curves are given in Figure 4.3b, 4.4b, and 4.5b for each simulation case.

1

I
m
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Figure 4.2b Simulation case 1) learning curve for SMM(OBE). SNR=-1OdB
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Upon viewing the experimental curves of Figures 4.3a-4.5a. it can be seen that

I SMM(OBE) performs very comparably to SMM(RLSFF). Also note that the experimental

curves are very close to their theoretical lower bounds of MMSOE performance. This is

encouraging, since RLS algorithms are based on MSE minimization, while the OBE

algorithm is based on minimizing ellipsoidal membership sets in a geometrical sense.

Though these two schemes minimize different quantities, it can be seen in Figures 4.3-4.5

that SMM(OBE) does in fact perform very well with respect to the MSE minimization

3. criterion of RLS, especially in the region of low SNR values. At higher SNR levels,

however, SMM(OBE) occasionally, but not consistently, yielded values of SSMSE which

1 exceedsignificantly those of SMM(RLSFF). This was especially evident in simulation

case 1) (Figure 4.3), but can also be seen to some degree in each of the curves. Thus it

might be conjectured that anomalous SSMSE behavior is more prone to occur in

SMM(OBE) at higher SNR's than at lower values. In particular, for negative SNR levels,

all the simulation curves in Figures 4.3-4.5 indicate consistently good SMM(OBE)

3 performance. The apparent anomalous behavior was observed always when the SNR was

greater than zero.

The above observations suggest near optimum performance of SMM(OBE) with

respect to the SSMSE criterion, especially at low SNR's. Next, the transient characteristics

of the learning curve will be addressed and it will be seen that SMM(OBE) actually exhibits

3 superior transient behavior to that of SMM(RLSFF) at low SNR's.

Ii Transient MSOE behavior

I In many applications (especially time-varying cases) the best steady-state

performance may not be the only important concern. The manner in which the steady state

is achieved may also be of extreme importance. Examination of the learning curve also

3 Iprovides much insight into this transient behavior.
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Upon viewing the learning curves of SMM(RLSFF) and SMM(OBE) for each

SNR, some very interesting characteristics were observed. In most cases the learning

curves obtained when using SMM(RLSFF) exhibited much higher peaks at smaller values

of n compared to that of SMM(OBE). Though this usually occurred, it was especially

evident at low SNR's, where SMM(RLSFF) peaked at huge values of MSOE compared to

the peaking of SMM(OBE). See again Figure 4.2 for an example of this behavior.

However, as with the SSMSE comparisons, some seemingly anomalous behavior

was observed in the learning curve of SMM(OBE) at some higher SNR's. In fact, the

same SNR's which yielded higher SSMSE yielded very peculiar learning curves. As can

be seen in Figure 4.3a, this unusual behavior was exhibited in simulation case 1) at the

SNR's of 6 and 10 dB. The corresponding learning curves are shown in Figures 4.6 and

4.7. Referring to Figure 4.6, it is seen that both algorithms peak at about the same time

and magnitude. The SMM(OBE) learning curve of Figure 4.6b shows that up to

approximately 150 iterations, SMM(OBE) appears to be converging smoothly as it did in

most of the other simulations (i.e. see Figure 4.2b). However, after this point, the learning

curve exhibits erratic behavior and subsequently does not settle to a level comparable to

SMM(RLSFF). In Figure 4.7, both learning curves appear on the same plot for

comparison. Referring to Figure 4.7a, it is seen that the peak of the learning curve of

SMM(OBE) is significantly higher than that of SMM(RLSFF), though they both reach

steady state at about the same time. To observe the steady state characteristics of the

curves, the portion of Figure 4.7a from 800 to 1000 iterations was expanded in Figure

4.7b. Erratic steady state behavior of the learning curve of SMM(OBE) is again observed. I
I
i
i
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An additional phenomenon of anomalous behavior was found in SMM(RLSFF),

which was surprising. In simulation case 2) at the low SNR's of -2 and -10 dB,

SMM(RLSFF) took very long to converge compared to both SMM(OBE) at those SNR's

as well as itself at all other SNR's. See Figures 4.8 and 4.9 for these learning curves.

Since there is so much peaking at low values of n, the curves of Figures 4.8a and 4.9a

were viewed starting from n=500 in Figures 4.8b and 4.9b in order to see the actual point

at which steady state was achieved. It can be seen that in both cases, more than 800

iterations were needed for SMM(RLSFF) to achieve steady state. Figures 4.8c and 4.9c

show the learning curves yielded by SMM(OBE) for the same simulation cases, and it can

be seemlhat SMM(OBE) converged smoothly in less than 200 iterations, as it did for all

cases of negative SNR.

tm

0

3 0 20 4 680 s0 10

3 Figure 4.8a Simulation case 2) learning curve for SMM(RLSFF). SNR-2dB

1
I
3 15
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Figure 4.9c Simulation case 2) learning curve for SMM(OBE). SNR=-lOdB

4.1.3 Summary of Simulations I
To summarize the observations of the preceding section, a few key points will be

reiterated here. First of all, both SMM(RLSFF) and SMM(OBE) performed well in the I
cases studied. However, unusual behavior of both algorithms was found which seemed to

follow a trend with respect to varying SNR levels. In particular, at a few low SNR's, I
which were negative, SMM(RLSFF) was found to converge very slowly. SMM(OBE), on

the other hand, converged very rapidly for all simulation cases at every SNR less than zero.

This might suggest a greater dependability of SMM(OBE) with respect to SMM(RLSFF) in

the presence of higher noise levels. At larger SNR's (_0), SMM(RLSFF) appears to be

the more dependable algorithm, as SMM(OBE) was seen not to converge very well in a I
few cases.

1
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Also worthy of mention are two observations made on the performance of

SMM(OBE) as the SNR varied. The first observation was a consistent increase in the

amount of data used by SMM(OBE) (i.e. the number of updates to 0) as the noise level

increased (i.e. SNRI). This is an interesting and intuitively satisfying property for an

information-dependet updating scheme to have. It seems reasonable that as the signal gets

more and more corrupted by noise, the algorithm needs to take more and more "looks" at it

to extract the proper information. Out of 1000 iterations, the average number of updmteg,

used in 10 independent runs of SMM(OBE) and the corresponding SNR values for each of

the simulation cases are shown in Table 1, where the inverse relationship between the SNR

and the number of updates is evident for all but a few increments in the SNR. Note in only

one simulation did the amount of data used for updating 0 exceed 10% of the total data. In

fact, for most cases, the parameter estimates were updated '-,ss than 8% of the time.

TABLE 1

Averagv Number of Updates of SMM(OBE)
SNR(dB) Ca= sC

-10 88.5 97.7 76.0
-8 80.0 104.5 65.9
--6 71.8 77.9 60,9

66.3 70.2 58.5
-- 68.3 65.2 62.2

0 67.5 52.6 63.6
2 65.7 42.4 53,6
4 45.0 41.9 51.5
6 43.6 42.3 60.3
8 36.2 42.7 60.410 29.5 45.8 52.3

'5mi The seiuond of the observations made on SMM(OBE) was an insensitivity of the

operaron of the algorithm with respect to the choice of the magnitude bound on the noise,

Im 1. This characteristc has Also been observed in other OBE algorithms as well [Rao89,

Sec.3.41. This observation was made through the following experiment. Initially, the
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noise bound, y, was chosen to agree with the noise level when the SNR was 0 dB. This

value of y was used for the SNR's ranging from -!0 to 10 dB. Note that for low SNR's

(<0), the noise bound at 0 dB is not a bound at all, and at high SNR's (>0), the 0 dB

bound is too large, which could degrade performance. In particular, since the noise

distribution was chosen to be uniform with zero mean, its magnitude bound can be

calculated using the formula:

YISN(d&,- SNR

Note that on the right side of this equation, the SNR is not in dB's. This calculation for

SNR = 0, -10, and 10 dB yields y0=-,3s1.73, y_ 10=-0=5.48, and Y10 =-0=0.548.

These calculations yield a factor of 4f]W0-3.16 underestimation or overestimation for the

simulations using SNR's of -10 and 10 dB, respectively. In spite of these misjudgments

in y, SMM(OBE) was observed to perform virtually identically to when the proper bound

was used. It thus appears that the performance of SMM(OBE) is insensitive to the

accuracy of y.

Practically, this is a very important property for an OBE algorithm to have, since it

is often not possible to meet certain assumptions of any algorithm exactly. It is therefore

crucial that a deviation of the true conditions from the ideal case does not cause a complete

failure in performance, a robustness property. Thus it appears that SMM(OBE) can be

described as being robust with respect to the choice of the noise bound used.

4.2 A Proposal of Two New Output Error Adaptive Algorithms

The final results of this thesis involve an RLS-type derivanon of algorithms for use

wth the output error adaptive system. By utilizing some previously derived expressions

for the output error, oetn), and its gradient, to algorithms can be derived which are
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identical to the RPE algonthms of Section 3.2.2. except for the construction of the matrix

R(n). Further investigations - both simulations and analysis - are needed to determine the

convergence properties of these algorithms.

Proceeding as in Section 3.2, it is desired to minimize the criterion JLS(n) of (3.11)I I with oe(n) as the error term:

J S(n) = Xoe2(i)

Again, taking derivatives with respect to the least-squares estimate after n iterations, O(n),

and setting to zero gives:
I ".n doe(i)

'-Foe(i . = 0 (4.2)I
This expression will be implemented in two different ways, giving rise to two algorithms

which are slightly different than RPE and have an appearance similar to the instrumental

variable method [Lj83,Sec.2.2.2], as will be discussed in Section 4,2.3.

3 4.2.1 Algorithm #1

1 From Section 2.1.2, oe(i)=y(i)-.(i), where

yO) = 16-1)tPoe(i )  (4.3)

Now from (3.9) olf Section 3.1.2, and assuming slow adaptation of the adaptive filter3 coefficients, the expression for the derivative of oeti) (which is the transpose of the

gradient) is:

doe(i) doe(i) -1 T (I ~ ~~~~d(n) dO^(n-1)-.(-ln)(44

I
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where the prime denotes autoregressive filtering by the denominator polynomial of the

adaptive filter. Substituting (4.4) and (4.3) into (4.2) and dividing through by -2 yields:

'[y(i) - T(n) po(i)](P( ki) =0I
i=1

Solving for 8(n) gives:

O(n) oe(oe i Y( ZP(i)y(i)

Similar to Section 3.2.1, a recursive formulation can be derived, yielding:

O(n) = b(n-1) + R, 1(n)(po,(n)oe(n) (4.5a) I
where

(n) =.(i)q(i) R(n-1) + T'o(n)%,(n)  (4.5b)

i=!

Examination of (4.5) shows this algorithm to be identical to the RPE algorithm, except for

the construction of R(n). Here both a filtered and unfiltered version of the regressor,

gpo(n), is used.

4.2.2 Algorithm #2

For this algorithm, the alternative expression (2.13) is used for oe(n) in (4.2),

which is repeated here:

1 e e(n) [y(n).. T(n-l) pee(n)]

oeAn) = A(q-l,n-l) e =(ql,n-l)
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= y (n) - 6T(n-1)%pee(n) (4.6)

Here, again, a primed quantity stands for a quantity which is autoregressively filtered by

the denominator polynomial of the adaptive filter.

Proceeding as before, (4.6) and (4.4) are now substituted into (4.2), yielding the

following equation:

In
.1[y-(i) - 6%T(pe' (p} (n) 0

Solving for b(n) yields:

6(n) =[ p'e(i)(pJ (n)} 00'() (i)

The recursive version of the above expression for b(n) is:

O(n) = 6(n-l) + R-1 (n)cp.(n) oe(n) (4.7a)

where

R(n) = X po(i)pJ(i)= R(n-1) + %,(n)C4 (n) (4.7b)
i-'l

4.3.3 Discussion of the Algorithms

An interesting characteristic of these algorithms that distinguishes them from the

RPE method is that they use two different vectors in the calculation of R(n). This feature is

reminiscent of the instrumental variable method [Lj83, Sec.2.2.2]. The instrumental

159



90

variable method is an algorithm for adapting an equation error adaptive filter, and is

identical to either (4.5) or (4.7) with the following substitutions: I
(4.5) (4.7) (n

(4.5) (4.7)

(4.5) (4.7)
oe(n) 4 ee(n) =* oe(n)

The vector (n) is called the instrumental variable, which can be chosen in many ways.

See [Lj83, Sec.2.2.2 and 3.6.3] for discussions on this subject.

A final comment regarding the algorithm (4.7) is worth mentioning. Since this -

algorithm uses both the equation error regressor as well as the usual output error regressor, I
it would be interesting - and certainly exciting - to see whether this method exhibits

characteristics of equation error adaptive schemes. Of particular interest is whether this

algorithm possesses a unimodal performance surface such as the SMM algorithms, which

also combine elements of equation error and output error schemes.

I

I
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